首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目前时变信号模型的混频误差成为时变重力场解算精度的主要限制之处,本文给出三种适合于重力任务的包含不同方向观测量的卫星编队GRACE-type,Pendulum-type和n-sCartwheel-type,设计两种方案并通过仿真实验研究了卫星编队用于消除海潮模型混频误差影响的可行性.结果表明,当不考虑模型混频误差时,n-s-Cartwheel编队能够为重力场解算提供最好的条件,与GRACE-type编队相比,对重力场解算精度提高达43%;当海潮模型的混频误差成为主要误差源时,利用卫星编队由动力法反演重力场并不能消除混频及提高重力场的解算精度,包含径向观测量的Cartwheel-type编队由于对重力场的高阶变化更为敏感,重力场结果中包含了更多的海潮模型误差的高频信号,误差急剧增大.  相似文献   

2.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

3.
利用SWARM卫星高低跟踪探测格陵兰岛时变重力信号   总被引:1,自引:0,他引:1       下载免费PDF全文
王正涛  超能芳 《地球物理学报》2014,57(10):3117-3128
GRACE重力卫星任务即将结束,后续GRACE Follow-On卫星计划于2017年发射,在此期间,迫切需要一个新的卫星计划继续对全球时变重力场进行连续监测,以保证时变重力场信息时间序列的连贯性.SWARM计划包括三颗轨道高为300~500 km的近极轨卫星星座,类似于三颗CHAMP卫星,具有接替时变重力场探测的潜力.本文首先分析SWARM(模拟)、CHAMP、GRACE反演至60阶时变重力场球谐系数的误差特性及不同高斯平滑半径对高频误差的抑制效果,然后分别利用SWARM、CHAMP、GRACE的时变重力场模型恢复全球质量变化,结果表明,SWARM模拟观测数据的高频误差低于CHAMP观测数据,探测时变重力场的整体精度优于CHAMP,略低于GRACE探测精度;其次,对比2003年1月—2009年12月期间CHAMP(hl-SST)和GRACE(ll-SST)时变重力场模型反演格陵兰岛冰盖质量变化趋势,结果显示,CHAMP数据得到格陵兰岛冰盖质量变化趋势为-50.2±2.0 Gt/a,GRACE所得结果为-41.2±1.6 Gt/a,两者相差21.8%;最后,对比2000年1月—2004年12月间SWARM模拟数据和"真实"模型数据反演的格陵兰岛冰盖质量变化趋势,结果表明,两者相差19.2%.本文研究表明,利用SWARM hl-SST数据探测时变重力场可以达到20%相对精度水平,有潜力用于填补GRACE和GRACE Follow-On期间探测地球时变重力场的空白.  相似文献   

4.
海潮对卫星重力场恢复的影响   总被引:7,自引:2,他引:7       下载免费PDF全文
本文讨论了海潮对卫星重力测量的影响问题. 首先介绍了海潮对卫星重力测量影响的基本理论;采用FES02和TPXO6海潮模型计算了海潮负荷对卫星重力结果前60阶的影响;并用两个模型之间的差异作为海潮模型精度的估计量,据此计算了海潮模型误差对卫星重力结果的影响. 与GRACE恢复的重力场精度的比较说明:海潮对重力场40阶以下的影响都超过了目前重力场恢复精度;尽管由于卫星测高技术的发展,海潮模型的精度有了很大的提高,但目前的全球海潮模型用于GRACE重力场恢复的前12阶的改正还是不够精确. 另外,我们也利用中国东海和南海潮汐资料以及FES02海潮模型讨论了中国近海潮汐效应对GRACE观测的影响. 结果说明该影响与海潮模型的误差相当. 这反映了当前海潮模型的不确定度,因此通过结合全球验潮站资料有望提高海潮对卫星重力测量的改正精度.  相似文献   

5.
本文利用卫星重力反演与模拟软件ANGELS系统(ANalyst of Gravity Estimation with Low-orbit Satellites)对低低跟踪模式的重力卫星的关键载荷精度指标进行了深入分析.模拟结果表明:(1)对短弧长积分法而言,在低低跟踪模式的关键载荷精度指标中,重力场反演精度对星间距离变率精度最为敏感;(2)通过对目前在轨运行GRACE的载荷指标进行分析,发现轨道数据的误差主要影响重力场的低阶部分(约小于25阶),较高阶次部分(约大于26阶)主要受星间距离变率的误差限制;(3)如果下一代低低跟踪模式的重力卫星的目标之一是把重力异常反演精度较GRACE提高约10倍,则在保持轨道高度和GRACE相同的前提下,轨道、星间距离变率和星载加速度计等关键载荷指标需要达到的最低精度分别约为2cm、10nm·s-1和3.0×10-10 m·s-2;(4)轨道精度和混频误差将是影响下一代低低跟踪模式重力卫星重力场恢复能力进一步提高的主要制约因素,距离变率精度和加速度计精度存在盈余.  相似文献   

6.
本文基于短弧长法开发了一套由低轨卫星数据解算重力场的系统ANGELS(ANalyst of Gravity Estimation with Low-orbit Satellites),成功用GRACE Level1B数据解算出全球时变重力场模型(第一版IGG-CAS系列模型),并与国际三大知名重力卫星相关研究机构:美国德克萨斯大学空间中心CSR (Center for Space Research)、德国GFZ地学研究中心(GeoForschungsZentrum)和美国宇航局JPL喷气推进实验室(Jet Propulsion Laboratory)发布的全球时变重力场模型(RL05模型)进行了详细的比较分析.通过每阶大地水准面差距的对比结果表明,IGG-CAS模型的精度接近RL05模型的精度.对以上四家机构在2004-2010年的时变重力场模型经过相同的去条带和高斯滤波处理,可以发现四家GRACE反演陆地水时变信号的空间分布十分接近,在长江流域反演的陆地水时变信号,两两之间的相关系数均大于0.8.通过反演撒哈拉沙漠干旱地区的时变信号来评估反演的精度水平,IGG-CAS、CSR-RL05、GFZ-RL05和JPL-RL05反演结果的均方差分别为1.5 cm、1.1 cm、1.1 cm和1.2 cm等效水柱高.综合表明IGG-CAS时变重力场反演模型的精度接近于目前国外主要机构最新公布的时变重力场模型.  相似文献   

7.
由于GRACE时变重力位系数中高阶次项存在较大的误差,奇(偶)项阶数之间存在着相关性误差,直接利用GRACE时变重力场模型数据反演地表质量变化时,会使结果出现严重的条带噪声,必须采用最佳滤波函数进行空间平滑.本文从滤波理论出发,依据信噪比最大准则和模拟误差比较分析了不同滤波方法的优缺点,并以华北平原为例进行了数值分析....  相似文献   

8.
利用动力学方法解算GRACE时变重力场研究   总被引:6,自引:4,他引:2       下载免费PDF全文
本文利用动力学方法建立GRACE(Gravity Recovery And Climate Experiment)K波段距离变率(KBRR)观测、轨道观测与重力场系数的观测方程,通过GRACE Level 1B观测数据,成功解算出全球月时变重力场模型——IGG时变重力场模型,并将2008—2009年的解算结果与GRACE三大数据处理机构美国德克萨斯大学空间中心CSR(Center for Space Research)、美国宇航局喷气推进实验室JPL(Jet Propulsion Laboratory)和德国地学研究中心GFZ(GeoForschungs Zentrum)发布的最新全球时变重力场模型进行详细对比分析.结果表明:IGG结果在全球质量异常、中国及周边地区质量异常的趋势变化、全球质量异常均方差、2~60每阶位系数差值以及亚马逊流域和撒哈拉沙漠等典型区域平均质量异常等方面与CSR、JPL和GFZ解算的RL05结果较为一致.其中,IGG解算结果在2~20阶与CSR、GFZ和JPL最新解算结果基本一致,20~40阶IGG解算结果与GFZ、JPL单位最新解算结果较为接近,大于40阶IGG结果介于CSR与GFZ、JPL之间;亚马逊流域平均质量异常周年振幅IGG、CSR、GFZ和JPL获取到的结果分别为17.6±1.1cm、18.9±1.2cm、17.8±0.9cm和18.9±1.0cm等效水柱高.利用撒哈拉沙漠地区的平均质量异常做反演精度评定,IGG、CSR、GFZ和JPL的时变重力场获取到的平均质量异常均方差分别为1.1cm、0.9cm、0.8cm和1.2cm,表明IGG解算结果与CSR、GFZ和JPL最新发布的RL05结果在同一精度水平.  相似文献   

9.
本文探索了海潮负荷特征值的反演方法.基于中国近岸海岛GPS站(平潭与闸坡)观测数据,采用FFT方法提取了海潮负荷特征值,分析了反演特征值与全球海潮模型FES2004、NAO.99b和GOT4.7计算出的相关特征值之间的差异,评估了反演海潮分潮频率项的精度,并利用平潭站得到的海潮负荷特征值对附近的三沙站进行海潮改正以评价反演效果.结果表明:(1)频谱分析可精确提取4个半日分潮和4个全日分潮负荷的频率信息;与已知频率相比,P1分潮的反演频率误差为1.4%,其他7种分潮负荷反演频率误差均小于1%.(2)两个海岛分属不同的潮波入侵通道,反演分潮振幅和初相存在差异,但反演分潮频率几乎一致,间接证实它们属于同一潮波系统,也表明其潮差有别.(3)反演振幅与三种全球模型具有较好的一致性;其中S2、O1、P1、Q1四个分潮在水平方向互差为1~2 mm,高程方向上的互差均小于3 mm;K2、K1、M2、N2在水平方向振幅互差多数小于2 mm,个别差异高达4 mm,高程方向互差多为5~6 mm,个别超过10 mm.(4)反演得到海潮负荷改正模型相对于3种全球模型在三沙站的改正效果略佳,间接表明反演结果有效、可靠.(5)动态PPP结果中虽然存在多种误差,其时间序列仍可分离并提取海潮负荷的影响.  相似文献   

10.
长时间序列的GRACE时变重力场对研究全球地表质量变化具有重要的意义.部分月份的GRACE卫星观测数据质量不佳导致了相应月份的时变重力场模型缺失,为了保持时变重力场模型的连续性,可采用一定的插值方法填补.本文以ITSG-Grace2016时变重力场模型序列为研究对象,详细分析了三次样条插值、三次埃尔米特插值和三次多项式插值等3种方法用于填补GRACE时变模型序列的精度,实验结果表明:(1)利用3种插值方法获取空缺1个月或连续空缺2个月的时变重力场模型时,插值时变模型与实测时变模型比较,阶误差均较小,且三次埃尔米特插值的精度稍好;(2)利用插值时变模型分析区域质量变化时,在空缺1个月数据的情况下,插值时变模型与实测时变模型符合度较高,但在连续空缺2个月数据的情况下,插值时变模型与实测时变模型的计算结果差异较大,说明利用阶误差评定模型精度具有一定局限性;(3)对区域质量变化的趋势项进行分析时,区域质量变化的复杂程度决定了模型内插的精度,当时间序列的长度在3年或3年以上时,插值时变模型的精度对区域质量变化分析的影响较小.在分析区域质量变化时,三次样条插值方法的插值结果与实测结果更为接近,建议采用该方法填补GRACE月时变重力场模型的缺失值.  相似文献   

11.
Satellite altimetry and GRACE observations carry both the signature of ocean tides and have in general complementary potential to resolve tidal constituents. It is therefore straightforward to perform a combined estimation of a global ocean tide model based on these two data sources. The present paper develops and applies a three step procedure for generating such a combined ocean tide model. First, the processing of multi-mission altimetry data is described along with the harmonic analysis applied to derive initially a pure empirical ocean tide model. Then the capability of GRACE to sense particular tidal constituents is elaborated and an approach to estimate tidal constituents from GRACE is outlined. In a third step a combination strategy with optimal stochastic data treatment is developed and applied to the altimetry-only tide model EOT08a and four years of GRACE observations, leading to the combined model EOT08ag. The differential contributions of GRACE to EOT08ag remain small and are mainly concentrated to the Arctic Ocean, an area with little or poor altimetry data. In comparison with other tide models, EOT08ag is validated by K-band range residuals, the impact on gravity field modelling and on precise orbit determination and by variance reduction of crossover differences. None of these comparison exhibits a significant improvement over the altimetry-only tide model except for a few areas above 60°N. Overall the improvements of the combination remain small and appear to stay below the current GRACE baseline accuracy.  相似文献   

12.
This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.  相似文献   

13.
The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.  相似文献   

14.
武汉台重力潮汐长期观测结果   总被引:5,自引:1,他引:4       下载免费PDF全文
采用武汉台超导重力仪(SG C032)14年多的长期连续观测资料,研究了固体地球对二阶和三阶引潮力的响应特征,精密测定了重力潮汐参数,系统研究了最新的固体潮模型和海潮模型在中国大陆的有效性.采用最新的8个全球海潮模型计算了海潮负荷效应,从武汉台SG C032的观测中成功分离出63个2阶潮汐波群和15个3阶潮汐波群信号,3阶潮波涵盖了周日、半日和1/3日三个频段.重力潮汐观测的精度非常高,标准偏差达到1.116 nm·s-2,系统反映了非流体静力平衡、非弹性地球对2阶和3阶引潮力的响应特征.结果表明,现有的武汉国际重力潮汐基准在半日频段非常精确,但在周日频段存在比较明显的偏差,需要进一步精化.对于中国大陆的大地测量观测,固体潮可以采用Dehant等考虑地球内部介质非弹性和非流体静力平衡建立的固体潮理论模型或Xu 等基于全球SG观测建立的重力潮汐全球实验模型作为参考和改正模型,海潮负荷效应应该采用Nao99作为改正模型.  相似文献   

15.
GOCE, Satellite Gravimetry and Antarctic Mass Transports   总被引:1,自引:0,他引:1  
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth’s gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.  相似文献   

16.
Different GRACE data analysis centers provide temporal variations of the Earth's gravity field as monthly, 10-daily or weekly solutions. These temporal mean fields cannot model the variations occurring during the respective time span. The aim of our approach is to extract as much temporal information as possible out of the given GRACE data. Therefore the temporal resolution shall be increased with the goal to derive daily snapshots. Yet, such an increase in temporal resolution is accompanied by a loss of redundancy and therefore in a reduced accuracy if the daily solutions are calculated individually. The approach presented here therefore introduces spatial and temporal correlations of the expected gravity field signal derived from geophysical models in addition to the daily observations, thus effectively constraining the spatial and temporal evolution of the GRACE solution. The GRACE data processing is then performed within the framework of a Kalman filter and smoother estimation procedure.The approach is at first investigated in a closed-loop simulation scenario and then applied to the original GRACE observations (level-1B data) to calculate daily solutions as part of the gravity field model ITG-Grace2010. Finally, the daily models are compared to vertical GPS station displacements and ocean bottom pressure observations.From these comparisons it can be concluded that particular in higher latitudes the daily solutions contain high-frequent temporal gravity field information and represent an improvement to existing geophysical models.  相似文献   

17.
中国大陆精密重力潮汐改正模型   总被引:12,自引:4,他引:8       下载免费PDF全文
利用理论和实验重力固体潮模型,充分考虑全球海潮和中国近海潮汐的负荷效应,建立了中国大陆的精密重力潮汐改正模型.结果表明,采用不同的固体潮模型会对重力潮汐结果产生相对变化幅度小于0.06%的差异;在沿海地区海潮负荷的影响约为整个潮汐的4%,而中部地区约为1%,其中中国近海潮汐模型的影响约占整个海潮负荷的10%,内插或外推潮波的负荷约占海潮负荷的3%.通过比较实测的重力数据表明,本文给出的重力潮汐改正模型的精度远远优于0.5×10-8 m·s-2,说明了本文构建的模型的实用性,可为中国大陆高精度重力测量提供有效参考和精密的改正模型.  相似文献   

18.
Currently,aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field.In provision of three types of satellite formations,i.e.,GRACE-type,Pendulum-type and n-s-Cartwheel-type,which are suitable for gravity mission and composed of observation in different directions,here we design two cases and conduct a simulation experiment on the feasibility to apply satellite formations for eliminating the influence from the aliasing error of ocean tide models.The result of our experiment shows that,when the aliasing error is disregarded,n-s-Cartwheel formation can provide the best conditions for gravity field determination,which,compared with GRACE-type,can improve the accuracy by 43%.When aliasing error of the ocean tide model acts as the main source of error,the satellite formation applied in dynamic method for gravity field inversion cannot eliminate aliasing or improve the accuracy of gravity field.And due to its higher sensitivity to the high-degree variation of gravity field,the Cartwheel-type formation,which includes the radial observation,can result in the gravity field containing more high-frequency signals for the ocean tide model error,and lead to a dramatically larger error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号