首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

2.
White Island is an active andesitic-dacitic composite volcano surrounded by sea, yet isolated from sea water by chemically sealed zones that confine a long-lived acidic hydrothermal system, within a thick sequence of fine-grained volcaniclastic sediment and ash. The rise of at least 106 m3 of basic andesite magma to shallow levels and its interaction with the hydrothermal system resulted in the longest historical eruption sequence at White Island in 1976–1982. About 107 m3 of mixed lithic and juvenile ejecta was erupted, accompanied by collapse to form two coalescing maar-like craters. Vent position within the craters changed 5 times during the eruption, but the vents were repeatedly re-established along a line linking pre-1976 vents. The eruption sequence consisted of seven alternating phases of phreatomagmatic and Strombolian volcanism. Strombolian eruptions were preceded and followed by mildly explosive degassing and production of incandescent, blocky juvenile ash from the margins of the magma body. Phreatomagmatic phases contained two styles of activity: (a) near-continuous emission of gas and ash and (b) discrete explosions followed by prolonged quiescence. The near-continuous activity reculted from streaming of magmatic volatiles and phreatic steam through open conduits, frittering juvennile shards from the margins of the magma and eroding loose lithic particles from the unconsolidated wall rock. The larger discrete explosions produced ballistic block aprons, downwind lobes of fall tephra, and cohesive wet surge deposits confined to the main crater. The key features of the larger explosions were their shallow focus, random occurrence and lack of precursors, and the thermal heterogeneity of the ejecta. This White Island eruption was unusual because of the low discharge rate of magma over an extended time period and because of the influence of a unique physical and hydrological setting. The low rate of magma rise led to very effective separation of magmatic volatiles and high fluxes of magmatic gas even during phreatic phases of the eruption. While true Strombolian phases did occur, more frequently the decoupled magmatic gas rose to interact with the conduit walls and hydrothermal system, producing phreatomagmatic eruptions. The form of these wet explosions was governed by a delicate balance between erosion and collapse of the weak conduit walls. If the walls were relatively stable, fine ash was slowly eroded and erupted in weak, near-continous phreatomagmatic events. When the walls were unstable, wall collapse triggered larger discrete phreatomagmatic explosions.  相似文献   

3.
Activity size distribution of the short-lived radon progeny in indoor air was measured continuously over several weeks. Two different measurement techniques were used: a direct measurement with a low-pressure Berner cascade impactor for attached fraction of 214Pb and 214Bi (≥100 nm) and an indirect determination based on measurement with a wire screen diffusion battery (unattached fraction 0.5–5 nm, 218Po, 214Pb). In parallel, the meteorological parameters like temperature, humidity were registered. Measured activity size distribution of radon progeny can be approximated by a sum of three log-normal distributions modes (nucleation, accumulation and coarse). The greatest activity fraction was adsorbed on aerosol particles in the accumulation size range (100–1000 nm) with activity median aerodynamic diameters (AMADa) and geometric standard deviations (GSD a ) values of 250–500 nm, and 1.5–3.5, respectively. The influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements a small but significant fraction of the radon progeny (average value 5 %) was attached to coarse particles (>1000 nm). This fraction varied between 0 and 10 %. On the other hand, although the amount of unattached activities not more 10 % of the total activity, but is considered to yield about 50 % of the total radiation dose. The mean thermodynamic equivalent diameters of 218Po and 214Pb were determined to be 1.28 and 1.30 nm with relative mean geometric standard deviations of 1.30 and 1.24, respectively. Based on the obtained results of radon progeny size distributions (attached and unattached), the total deposition fractions of the human lung were evaluated by using a lung deposition model.  相似文献   

4.
Volcanic aerosol emissions have been studied for the first time by in situ photoelectric charging. Explorative studies on Mt Etna reveal large concentrations of particles below 1000 nm with the spectrum peaking in the size range of 100–1000 nm diameter. Although a large fraction of the particles is already charged upon emission, the net electrical charge carried by the aerosol turned out to be close to zero.Particles with high photoelectric yield vary greatly in their relative abundance and seem to occur mainly at active points of the volcano.  相似文献   

5.
The May, 2008, Chaitén (southern Chile) eruption was characterized by several explosive events, each associated with plumes which reached up to about 19?km above sea level on May 6. A study of the textural and physical features of the juvenile clasts erupted during the climactic phase of the 2008 eruption of Chaitén is presented. Pumice clasts show unimodal density distribution (main mode at 600?kg/m3), average vesicularity of about 69?%, a glassy groundmass with no microcrystals, and vesicles with dimension between ~1?μm and ~2?mm. They also show a unimodal vesicle size distribution with most frequent vesicle size in the range 0.05–0.08?mm and an estimated vesicle number density of 1.3?±?0.5?×?105?mm?3 related to a rapid nucleation event produced during the late phases of magma rise. This is confirmed by the absence of microcrystals that could otherwise have delayed vesicle formation and allowed the magma to maintain a low viscosity and a supersaturation in volatiles. Vesiculation and fragmentation were triggered by a sudden decompression of the melt associated with the opening of the volcanic conduit (~10?MPa?s?1).  相似文献   

6.
The thermal energy balance and the temperature profile of the Hakone volcano are considered quantitatively. Across the Hakone volcano and its surroundings the heat flow values vary from 10–1 to 103 mW/m2, due to thermal conduction and mass flow involving volcanic steam and hot spring discharge. An area with extremely low heat flow is observed in the western side of the caldera showing the presence of percolating meteoric water. The hydrothermal activity is intense in the eastern half of the caldera.The total heat discharge from the high temperature zone (discharge area) of the Hakone volcano amounts to 11.0×107 W. The magmatic steam energy discharge is 95.0×106 W. The thermal energy by redistribution of the terrestrial heat flow by the lateral deep ground water flow is calculated to be 9.00×106 W. For the model having the vertical vent in the volcano's central part up to 1 km depth below the ground surface from a magma reservoir the computed temperature distribution is consistent with the observed values. The depth of the magma reservoir is 7 km below the ground surface and the diameter is 5 km.  相似文献   

7.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   

8.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

9.
Santiaguito volcano has shown a continuous slow extrusion of dacite lava since 1922. In the 50 years of activity there have been four periods of abnormally high extrusion rates, interspersed by periods of little magma production. The type of activity shown by the volcano has been varied and crudely cyclic. Dome extrusion periods are accompanied by pyroclastic activity and followed by lava flows. There are now 16 time stratigraphic units delineated on the dome. Activity since 1967 has been especially closely observed. Dome extrusion at the west end of the complex has been accompanied by pyroclastic cruptions and plug dome extrusion at the east end. The eurrent extrusion rate has remained essentially constant since 1967 at about 5×106 m3/yr, far below Santiaguito’s 1922–71 average of 14×106 m3/yr. The active vent at the east end of the volcano (Caliente vent) has been the principal vent of the volcano since the creation of the explosion crater in 1902. After its initial period of dome extrusion (1922–25), the Caliente vent has chiefly produced pyroclastic eruptions as well as at least 95% of the dome’s lumarolic activity, while lateral vents have continued to give rise to lavas. Lava flows at Santiaguito have effective viscosity values of about 106 poises, while dome lavas are significantly more viscous. The differences in viscosity are in part related to volatile content of the lava when it reaches the surface. During dome extrusion, lavas lose their volatiles through pyroclastic activity before they reach the surface. Lava flows at Santiaguito occur when lava reaches the surface with higher volatile content. Obstruction of either the central (pyroclastic) vent or the lateral (dome extrusion) vent or both vents has an important influence on succeeding activity. In June 1972, at the time of this writing, the outbreak of new lava flows at both the Caliente and lateral El Brujo vents has just occurred, resulting from obstruction of pyroclastic activity by a large plug dome at the Caliente vent.  相似文献   

10.
An analysis of local seismicity within the Avacha–Koryakskii Volcanic Cluster during the 2000–2016 period revealed a sequence of plane-oriented earthquake clusters that we interpret as a process of dike and sill emplacement. The highest magmatic activity occurred in timing with the 2008–2009 steam–gas eruption of Koryakskii Volcano, with magma injection moving afterwards into the cone of Avacha Volcano (2010–2016). The geometry of the magma bodies reflects the NF geomechanical conditions (tension and normal faults, \(S_V>S_{H_{\text{max}}}>S_{h_{\text{min}}}\)) at the basement of Koryakskii Volcano dominated by vertical stresses S v , with the maximum horizontal stress \(S_{h_{\text{max}}}\) pointing north. A CFRAC simulation of magma injection into a fissure under conditions that are typical of those in the basement of Koryakskii Volcano (the angle of dip is 60°, the size is 2 × 2 km2, and the depth is –4 km abs.) showed that when the magma discharge is maintained at the level of 20000 kg/s during 24 hours the fissure separation increases to reach 0.3 m and the magma injection is accompanied by shear movements that occur at a rate as high as 2 × 10–3 m/s, thus corresponding to the conditions of local seismic events with Mw below 4.5. We are thus able to conclude that the use of planeoriented clusters of earthquakes for identification of magma emplacement events is a physically sound procedure. The August 2, 2011 seismicity increase in the area of the Izotovskii hot spring (7 km from the summit of Koryakskii Volcano), which is interpreted as the emplacement of a dike, has been confirmed by an increase in the spring temperature by 10–12°C during the period from October 2011 to July 2012.  相似文献   

11.
We have analysed volatiles (H2O, He, Ar, CO2) in differentiated (basaltic andesite, dacite) volcanic glasses dredged at a depth of ca. 2000 m in the eastern part of the Manus Basin between 151°20′ and 152°10′ E. These samples have Sr–O–B isotopic ratios that show that they most likely represent lavas evolved from a common magma source. Since these glasses are very fresh, they provide a unique opportunity to study the behaviour of magmatic volatiles during assimilation–fractional crystallisation–degassing (AFCD). The samples are highly vesicular (up to 18%) and the volatiles trapped in vesicles consist predominantly of H2O with minor amounts of CO2, and the concentration of water in the glasses indicates that H2O saturation was attained. Rare gases except helium are atmospheric in origin, and the 3He/4He ratios and the CO2/3He ratios are respectively lower and higher than those typical of Mid-Ocean Ridge Basalt (MORB), and appear to correlate with the degree of differentiation. AFCD allows efficient degassing of mantle-derived volatiles and contribution of crust-derived and atmosphere-derived volatiles. Given the widespread occurrence of differentiated magmatism at arcs, we suggest that AFCD is responsible for large-scale occurrence of 3He-rich crustal fluids and of atmospheric-like rare gases in arc emanations, and that most of the volatiles are lost continuously during fractional crystallisation, rather than catastrophically during eruptions.  相似文献   

12.
The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10 5 to 10 6 years. We address the question of why buoyant and otherwise eruptible high-silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10 18 to 10 20 Pa s –1, dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10 2 km 3) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid infiltration, or metamorphic reactions. The long-term magma supply rate and chamber volume are important controls on eruption frequency for all magma chamber sizes. The model can explain certain aspects of the frequency, volume, and spatial distribution of small-volume silicic eruptions in caldera systems, and helps account for the large size of granitic plutons, their association with extensional settings and high thermal gradients, and the fact that they usually post-date associated volcanic deposits.  相似文献   

13.
We measured quantitatively colors of volcanic ash deposits erupted from three different styles of summit activity (Strombolian activity, Vulcanian explosions and continuous ash venting activity) at Sakurajima volcano from 1974 to 1985. Colors of Strombolian ash samples have larger yellow components of their visible spectra (b? values) than those of explosion and continuous venting ash samples. Colors of explosion ash samples show larger variation in both red and yellow components of their visible spectra (a? and b? values, respectively), while colors of continuous venting ash samples are in the narrow ranges within colors of explosion ash samples. Colors of components with lower densities than 3.1 g/cm3 (groundmass and phenocrystic plagioclase) obtained by magnetic and heavy liquid separation methods are similar to the unseparated bulk ash samples. This result suggests that the color variations of ash deposits are mainly originated from the particles composed of groundmass. The particles can be classified into three different types of particles with different vesicularity and crystallinity (vesicular particle [VP], dense particle with vesicles [DPV] and dense particle without vesicles [DP]). Analytical results of component proportions, chemical compositions of groundmass glasses, ferrous iron contents and surface ferric materials show that (1) VP has larger yellow components of the visible spectrum (b? values) and high ferrous iron content, and is less crystallized than the DP and DPV, (2) DP has larger red and yellow components of its visible spectrum (a? and b? values, respectively) and involves ferric materials on the surfaces produced by oxidation process, and (3) DPV has smaller red and yellow components of its visible spectrum (a? and b? values, respectively) and involves less ferric materials on the ash surfaces. Color differences of ash deposits from three different activity styles can be explained by the different mixing ratios of VP, DPV and DP. During the Strombolian activity, the VP is a main component in the ash, which is formed from relatively less degassed and crystallized magma. In the Vulcanian explosion and continuous ash venting activity, the proportions of DPV and DP in ash are larger than that in the Strombolian activity. The highly crystallized DP may correspond to a vent cap, and DPV to a magma below the cap. The color measurements of ash deposits provide information on the pre-eruptive processes at the shallower levels of a conduit.  相似文献   

14.
Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and flows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic field, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems.40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff (the Main Group) were erupted during an ∼540 ka interval between 7.06 and 6.52 Ma. These rocks define a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ∼11–9 and ∼8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ∼6.1 and ∼1.5 Ma.The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes (∼200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. The ∼540 ka eruptive interval demands input of heat into the system by replenishment with silicic melts, or basaltic underplating to maintain the Bearhead Rhyolite magma chamber.Although the volatile content of Main Group magmas was within the range of rhyolites from major caldera-forming eruptions such as the Bandelier and Bishop Tuffs, eruptions were smaller volume and dominantly effusive. Bearhead Rhyolite domes occur at the intersection of faults, and are cut by faults, suggesting that the magma chamber was structurally vented preventing volatiles from accumulating to levels high enough to trigger a caldera-forming eruption.  相似文献   

15.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

16.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

17.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

18.
A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1?km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic–hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids to percolate downward, favouring the development of hydrothermal convection cells which are driven by hot magma. The end result is a vigorous hydrothermal system which is driven by magma recharge.  相似文献   

19.
Volcanological and petrological data suggest that the Phlegraean Fields volcanic activity has been fed, at least in the last 10,500 years, by a not-refilled magma chamber where trachytic residual liquids were produced by fractionation of a trachybasaltic magma. Using estimated volumes of the erupted products andP–T data obtained through petrological studies, a conductive thermal model of the chamber was built up in order to estimate its past and present size. Results suggest a volume decrease from approximately 14 to 1.4 km3 of the trachybasaltic magma in 10,500 years. Trachytic liquid would also be present in the chamber in a minimum amount of 0.4 km3. The model allowed some insights on the petrogenesis of the Phlegraean trachytes, suggesting that they were erupted as liquids because thermally buffered within the magma chamber.  相似文献   

20.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号