首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
From 2005 to 2009, the spatial distribution and the seasonal dynamics of chromophoric dissolved organic matter (CDOM) were explored in Lake Taihu in eastern China. The spatial-seasonal dynamics of CDOM absorption and three CDOM composition variables, including spectral slope (S), spectral slope ratio (SR) and the M value, defined as the ratio of absorption at 250 nm/365 nm, were analyzed and discussed. Furthermore, river input processes and degradation of phytoplankton were studied to assess their impact on CDOM composition and the factors involved in the spatial-seasonal variability of CDOM. The CDOM absorption coefficient at a wavelength of 350 nm, a(350), ranged from 1.37-9.55 m−1 with a mean of 3.33 ± 1.32 m−1. Spatially, higher a(350) values, but lower spectral slope, spectral slope ratio and M values, were recorded in the northern algae dominated bays while lower values were recorded in southeastern macrophyte dominated bays. The a(350) was significantly higher in inshore waters than in offshore waters. Values of S, SR and M decreased during the flood and algal bloom season in spring and summer whereas a(350) increased. In the three river profiles, the gradual decrease of a(350) along the trajectory from the river mouth into the lake during the flood season showed the contribution of allochthonous CDOM. A laboratory phytoplankton degradation experiment was conducted to determine the contribution of CDOM production from phytoplankton. The significant increase of a(350) with time in the CDOM production experiment underlines the importance of autochthonous CDOM production during the algal bloom season. In summary, the significant increase of a(350) in spring and summer (algal bloom season) may be due to both the allochthonous CDOM input from the surrounding rivers and the autochthonous production of CDOM from degrading phytoplankton.  相似文献   

2.
Surface sediments from the Gulf of Cádiz (GoC) were analyzed by alkaline CuO oxidation, in order to estimate the contribution of terrigenous organic matter (TOM) to the inner continental shelf of the southwest Iberian Peninsula. The parallel analysis of sediment samples from the two most important rivers draining to this coastal area (i.e. Guadiana River and Tinto–Odiel fluvial system) provided fundamental information regarding local terrestrial sources. Relatively constant intensive lignin parameters (S:V = 1.0 ± 0.1 and C:V = 0.22 ± 0.04) and high values of the lignin phenol vegetation index (LPVI = 155 ± 43) indicated that non-woody angiosperm tissues constitute the dominant component of vascular plant material reaching the shelf sediments. The NW to SE decreasing isotopic (13C) and molecular (Λ8) signatures found among the sediments, coinciding with the Guadiana delivery plume, suggest that this river is the main terrestrial source in the inner GoC shelf. Slightly elevated values of degradation indicative ratios ([Ad:Al]V = 0.41 ± 0.10; [Ad:Al])S = 0.34 ± 0.07; [3,5-Bd:V] = 0.14 ± 0.05; P:[V + S] = 0.24 ± 0.09) suggested the alteration state of the shelf sediments. The two fold higher ratios of the river sediments (Guadiana: [Ad:Al]V = 0.82 ± 0.08; [Ad:Al]S = 0.84 ± 0.03; Tinto–Odiel: [Ad:Al]V = 0.86 ± 0.12; [Ad:Al]S = 0.83 ± 0.013) and the increasing degradation trend observed outward in the shelf, lead us to consider preferential sorption processes, instead of in situ diagenesis, to affect the degradation signature of the shelf sediments. Preferentially solubilized degraded OM is more likely to be sorbed and stabilized prior to transport to the marine system, showing an apparently more advanced degradation state. The use of the 3,5-Bd:V ratio in conjunction with (Ad:Al)V revealed a composition continuum of the sedimentary OM ranging from fresh plant materials to highly altered soil humic constituents. Elemental and molecular analyses show a land to sea gradient by a NW to SE decrease of the terrestrial influence, accounting for larger terrestrial inputs (TOM: 71–98%) in those sediments near the Guadiana mouth, and predominantly autochthonous composition (TOM: 42–50%) in those located offshore. This work utilizes lignin derived biomarkers to determine the contribution of terrigenous OM delivered to this poorly described coastal area from regional rivers. Within a context of increasing international efforts to better understand the global C cycling, this study illustrates the relevance of using the alkaline CuO oxidation approach to evaluate C budgets and continental influence in river dominated ocean margins.  相似文献   

3.
This report describes in situ ion microprobe U–Pb dating of a protoconodont, an early Cambrian phosphate microfossil, using laterally high-resolution secondary ion mass spectrometry (NanoSIMS). On a single fragment of a fossil (approximately 850 μm × 250 μm) derived from a sedimentary layer in the Meishucunian Yuhucun Formation, Yunnan Province, southern China, 23 spots provide a 238U/206Pb isochron age of 547 ± 43 Ma (2σ, MSWD = 1.9), which is consistent with the depositional age, 536.5 ± 2.5 Ma estimated using zircon U–Pb dating of interbedded tuffs. However, five spots on a small region (approximately 250 μm × 100 μm) in the same protoconodont yield an isochron age of 417 ± 74 Ma (2σ, MSWD = 0.31), apparently younger than the formation age. The younger age might be attributable to a later hydrothermal event, perhaps associated with Caledonian orogenic activity recorded in younger zircon with an age of 420–440 Ma. We also measured 87Sr/86Sr ratios of the protoconodont by NanoSIMS. In the older domain, 19 spots give the 87Sr/86Sr ratio of 0.71032 ± 0.00023 (2σ), although seven spots on the younger region provide the ratio of 0.70862 ± 0.00045; this is significantly less radiogenic than the older domain. This is the first report of U–Pb age and Sr isotope heterogeneity within a single fragment of micro-fossil (215).  相似文献   

4.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   

5.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

6.
Effective radium-226 concentration (ECRa) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. ECRa was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The ECRa values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg?1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg?1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent ECRa values in corresponding stratigraphic sediment layers. ECRa measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, ECRa values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg?1 in soils of Syabru–Bensi (Central Nepal), 23 ± 1 Bq kg?1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg?1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg?1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of ECRa values for these various soils is important for modelling radon exhalation at the ground surface, in particular in the vicinity of active faults. Importantly, the study also reveals that, above numerous sediments of Kathmandu Valley, radon concentration in dwellings can potentially exceed the level of 300 Bq m?3 for residential areas; a fact that should be seriously taken into account by the governmental and non-governmental agencies as well as building authorities.  相似文献   

7.
Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (?R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ?R, ranging from 148 ± 46 14C yr on the Potomac River to ? 109 ± 38 14C yr at Swan Point, Maryland. The ?R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (? 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ?R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.  相似文献   

8.
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (δ18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ± 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate–water oxygen isotope fractionation, ε18OSO4–H2O, of ~ 3.8‰ for the anaerobic experiments. Aerobic oxidation produced apparent εSO4–H2O values (6.4‰) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. δ34SSO4 values are ~ 4‰ lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in δ34SSO4 of ~? 1.5 ± 0.2‰ was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.  相似文献   

9.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

10.
11.
A large number of Paleoproterozoic borate deposits are hosted by the lower units of a volcanic-sedimentary sequence in Liaoning Province, northeastern China, and are a major source of boron in China. The ore-bearing wall rocks in the deposits are serpentinized ultrabasic rocks and carbonates, with layered leptynites, leptites, amphibolites, and migmatites adjacent to the ore. Both the borate ores and country rocks contain tourmaline, although the country rocks have much lower abundances of the mineral. Based on in situ boron isotope measurements using laser ablation–multi-collector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS), boron isotope data show that: (1) δ11B values of borate ores range from + 6.8‰ to + 13.9‰ (mean + 10.8‰); (2) tourmalines from the borate ores have δ11B values from + 9.5‰ to + 12.7‰; and (3) the wall rocks within the borate ores yield slightly lower δ11B values ranging from + 5.7‰ to + 7.6‰, and those outside the deposits from − 9.9‰ to − 5.9‰. Positive δ11B values in borates as well as in tourmalines inside the mining area indicate that boron in these Paleoproterozoic borate deposits was derived from marine evaporites. δ34SV-CDT (where V-CDT is Vienna Canyon Diablo Troilite) values of borate ores, serpentinized marbles, and anhydrites range from + 16.1‰ to + 24.7‰, whereas δ13CV-PDB (where V-PDB is Vienna Pee Dee Belemnite) values of marbles range from + 3.2‰ to + 5.9‰. These isotopic characteristics are interpreted to reflect formation in a marine evaporative environment. LA–MC–ICP–MS zircon weighted207Pb/206Pb ages of leptite and serpentinized olivine basalt from the hanging wall of the borate deposits are 2139 ± 13 Ma and 2130 ± 19 Ma, respectively. Therefore, the (~ 2.2 Ga) borate deposits may have originated from marine evaporative boron-bearing sediments, which were interbedded within bimodal volcanic rocks during the early stages of development of the Liaoji rift.  相似文献   

12.
This work describes the in situ analysis of loparite [(Na,REE)Ti2O6], a perovskite group mineral with extremely low Rb/Sr ratios and high rare earth contents, by LA-(MC)-ICP-MS for the determination of U–Pb ages together with Sr and Nd isotopic composition. The reliability of these data were validated by analysis of a loparite standard by TIMS solution methods. Data are given for loparite from the Lovozero and Khibiny peralkaline complexes of the Kola Alkaline Province (Russia). For Lovozero loparite the Tera–Wasserburg intercept age for 15 loparites analysed is 373 ± 11 Ma, and the weighted 207Pb corrected 206Pb/238U age is 373 ± 2 Ma. For Khibiny loparite, the intercept age for 5 loparites analysed is 375 ± 10 Ma, and the weighted 207Pb corrected 206Pb/238U age is 374 ± 3 Ma. The common Pb compositions for Lovozero and Khibiny loparites are identical i.e. 207Pb/206Pb = 0.898 ± 0.009 and 0.898 ± 0.007, respectively. The 87Sr/86Sr initial ratios of Lovozero loparite range from 0.703552 to 0.703682 (av. 0.703611), and εNd (t370) from + 3.8 to + 4.4 (av. + 4.0). The 87Sr/86Sr initial ratios of Khibiny loparite range from 0.703560 to 0.703871, and εNd (t730) from + 4.0 to + 4.8. Our data indicate that in situ LA-(MC)-ICP-MS analysis of loparite provides accurate and precise estimates of the intrusion ages and isotopic composition of peralkaline rocks.  相似文献   

13.
Surface water optical characteristics, nutrients, and planktonic chlorophyll a concentrations were analyzed in the Cape Fear River (CFR) plume over a 2-year period. CFR discharge during the dry year (109 ± 105 m3s−1) was only 25% of the wet year discharge (429 ± 337 m3s−1). Partitioning the contributions of phytoplankton pigments, non-pigmented particles, and colored dissolved organic matter (CDOM) to the absorption of photosynthetically active radiation (PAR) indicated that CDOM was the dominant contributor to PAR absorption. Particulate absorption was relatively greater during the dry year. Pigment absorption was minor and varied little among stations or between years. Chlorophyll a concentrations were reduced at the most plume-influenced stations during the wet year, despite lower turbidity and higher nitrate concentrations. Ammonium and orthophosphate concentrations were not different between years. CDOM absorption [a CDOM (412)] ranged from 0.05 to 8.25 m−1 with highest values occurring near the CFR mouth. Our results suggest that for coastal ecosystems with significant blackwater river inputs, CDOM may exert a major limiting influence over near-shore primary production.  相似文献   

14.
《Quaternary Research》2014,81(3):531-537
We investigate the changes at nine glaciers in the Ningchan and Shuiguan river source, eastern Qilian Mountains, between 1972 and 2010. According to analysis of topographic maps and multispectral satellite data, all nine glaciers in the study area have retreated, by a maximum of 250 ± 57.4 m and a minimum of 91 ± 57.4 m. The total glacier area decreased by 1.20 km2, corresponding to 9.9% of the glacierized area in 1972. Comparing the two DEMs generated from the topographic maps and Real-Time Kinematic GPS data, the mean glacier thinning rate was 0.64 m yr 1 between 1972 and 2010. The most significant thinning generally occurred on the termini. The ice-volume loss was about 106.8 ± 46.7 × 10 3 km3 (equal to 90.8 ± 39.7 × 10 3 km3 w.e.), which suggested a mean water discharge of 0.1 ± 0.05 m3/s during 1972–2010. Based on analysis of meteorological data, the summer temperature (June–August) tends to increase over a similar time period. The consistency of temperature increase and glacier shrinkage allows us to suggest that air temperature plays an important role in glacier changes in this region.  相似文献   

15.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

16.
The cirques of Snowdonia, North Wales were last occupied by glacier ice during the Younger Dryas Chronozone (YDC), c. 12.9–11.7 ka. New mapping presented here indicates 38 small YDC cirque glaciers formed in Snowdonia, covering a total area of 20.74 km2. Equilibrium line altitudes (ELAs) for these glaciers, calculated using an area–altitude balance ratio (AABR) approach, ranged from 380 to 837 m asl. A northeastwards rise in YDC ELAs across Snowdonia is consistent with southwesterly snow-bearing winds. Regional palaeoclimate reconstructions indicate that the YDC in North Wales was colder and drier than at present. Palaeotemperature and annual temperature range estimates, derived from published palaeoecological datasets, were used to reconstruct values of annual accumulation and ‘winter balance plus summer precipitation’ using a degree-day model (DDM) and non-linear regression function, respectively. The DDM acted as the best-estimate for stadial precipitation and yielded values between 2073 and 2687 mm a?1 (lapse rate: 0.006 °C m?1) and 1782–2470 mm a?1 (lapse rate: 0.007 °C m?1). Accounting for the potential input of windblown and avalanched snow onto former glacier surfaces, accumulation values dropped to between 1791 and 2616 mm a?1 (lapse rate: 0.006 °C m?1) and 1473–2390 mm a?1 (lapse rate: 0.007 °C m?1). The spatial pattern of stadial accumulation suggests a steep precipitation gradient and provides verification of the northeastwards rise in ELAs. Glaciers nearer the coast of North Wales were most responsive to fluctuations in climate during the YDC, responding to sea-ice enforced continentality during the coldest phases of the stadial and to abrupt warming at the end of the stadial.  相似文献   

17.
Pore waters of natural clays, which are investigated as potential host rock formations for high-level nuclear waste, are known to contain large amounts of low-molecular weight organic compounds. These small organic ligands might impact the aqueous geochemistry of the stored radionuclides and, thus, their migration behavior. In the present work, the complexation of Cm(III) with formate in aqueous NaCl solution is investigated by time-resolved laser fluorescence spectroscopy (TRLFS) as a function of the ionic strength (0.5–3.0 mol/kg), the ligand concentration (0–0.2 mol/kg) and the temperature (20–90 °C). The Cm(III) speciation is determined by deconvolution of the emission spectra. The obtained distribution of Cm(III) species is used to calculate the conditional stability constants (log K′(T)) at a given temperature and ionic strength which are extrapolated to zero ionic strength by using the specific ion interaction theory (SIT). Thus, the thermodynamic log K0n(T) values for the formation of [Cm(Form)n](3−n)+ (n = 1, 2) and the ion interaction coefficients (ε(i,k)) for [Cm(Form)n](3−n)+ (n = 1, 2) with Cl are obtained. The log K01(T) (2.11 (20 °C)–2.49 (90 °C)) and log K02(T) values (1.17 (30 °C–2.01 (90 °C)) increase continuously with increasing temperature. The log K0n(T) values are used to derive the standard reaction enthalpies and entropies (ΔrH0m, ΔrS0m) of the respective complexation reactions according to the Van’t Hoff equation. In all cases, positive ΔrH0m and ΔrS0m values are obtained. Thus, both complexation steps are endothermic and entropy-driven.  相似文献   

18.
The Hukeng tungsten deposit, located in the Wugongshan area in central part of Jiangxi province, South China, is a large-scale quartz-vein wolframite deposit. It is hosted in the Hukeng granitic intrusion. Based on the mineral assemblage and crosscutting relationship of the veins, three mineralization stages are identified, including: (1) quartz–wolframite stage, (2) quartz–fluorite–wolframite stage, and (3) quartz–pyrite–sphalerite–wolframite stage.The homogenization temperatures of fluid inclusions in vein quartz vary from 220 to 320 °C, and the salinities are from 0 to 10 wt.% NaCl equiv.; corresponding densities range from 0.7 to 1 g/cm3. These features indicated that the ore-forming fluids in the Hukeng tungsten deposit have medium temperature, low density and low salinity.The δ18OSMOW values of quartz range from 10.8‰ to 14.4‰, with corresponding δ18Ofluid values of 3.7‰ to 7.7‰, and δD values of fluid inclusions of between ? 70‰ and ? 55‰. The combined isotopic data indicate that the ore-forming fluids of the Hukeng tungsten deposit were mainly derived from magmatic water, with some minor input from meteoric water.We have carried out molybdenite Re–Os and muscovite 40Ar/39Ar dating to constrain the timing of mineralization. Re–Os dating of six molybdenite samples yielded model ages ranging from 149.1 ± 2.0 to 150.7 ± 3.7 Ma, with an average of 150.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 150.2 ± 2.2 Ma (MSWD = 0.60). Hydrothermal muscovite yields a plateau 40Ar/39Ar age of 147.2 ± 1.4 Ma. 40Ar/39Ar age is in good agreement with the Re–Os age. These ages show that the timing of tungsten mineralization occurred at about 150 Ma. Our new data, when combined with published geochronological results from the other major deposits in this region, suggest that widespread W mineralization occurred in the Late Jurassic throughout South China.  相似文献   

19.
Pyrogenic carbon (PyC), a by-product of recurrent boreal wildfires, is an important component of the global soil C pool, although precise assessment of boreal PyC stock is scarce. The overall objective of this study was to estimate total C stock and PyC stock in forest floors of Eastern Canada boreal forests. We also investigated the environmental conditions controlling the stocks and characterized the composition of the forest floor layers. Forest floor samples were collected from mesic black spruce sites recently affected by fire (3–5 yr) and analyzed using elemental analysis and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. PyC content was further estimated using a molecular mixing model. Total C stock in forest floors averaged 5.7 ± 2.9 kg C/m2 and PyC stock 0.6 ± 0.3 kg C/m2. Total stock varied with position in the landscape, with a greater accumulation of organic material on northern aspects and lower slope positions. In addition, total stock was significantly higher in spruce-dominated forest floors than stands where jack pine was present. The PyC stock was significantly related to the atomic H/C ratio (R2 0.84) of the different organic layers. 13C NMR spectroscopy revealed a large increase in aromatic carbon in the deepest forest floor layer (humified H horizon) at the organic-mineral soil interface. The majority of the PyC stock was located in this horizon and had been formed during past high severity fires rather than during the most recent fire event.  相似文献   

20.
The Bastar Craton of Central India has a thick sequence of volcano–sedimentary rocks preserved in Kotri–Dongargarh belt that developed on a tonalite-trondhjemite-granodiorite (TTG) basement followed upwards by the Amgaon, Bengpal, Bailadila, and Nandgaon Groups of rocks. Here, we report the U-Pb geochronology and Lu-Hf isotope systematics and whole rock geochemistry of volcanic rocks and associated granitoids belonging to the Pitepani basalts, Bijli rhyolites, and Dongargarh granite in the Nandgaon Group of the Kotri belt. The volcanic rocks of the Nandgaon Group are bimodal in nature in which the basalts exhibit intergranular, porphyritic to spherulitic texture composed of pyroxenes, plagioclase, tremolite, actinolite, and chlorite ± Fe oxides. The rhyolites display porphyritic texture consisting of K-feldspar, quartz, and plagioclase as phenocrysts. The associated porphyritic granitoids have K-feldspar, microcline, plagioclase, and biotite phenocrysts within a groundmass of similar composition. The bimodal suite displays LILE, LREE enrichment, and HFSE depletion with significant negative Nb-Ta anomalies combined with slightly fractionated REE patterns in the basalts and highly fractionated patterns and prominent negative Eu anomalies in the rhyolites endorsing their generation in an island-arc/back-arc tectonic setting. The geochemical features of the associated granitoids indicate that these are potassic and classify as within-plate A-type granites. Zircons from the basalts show clear oscillatory zoning in their CL images. They cluster as a coherent group with 207Pb/206Pb spot ages ranging from 2446 to 2522 Ma and weighted mean age of 2471 ± 7 Ma. Zircons from the rhyolite samples are subhedral to euhedral and show simple oscillatory zoning with some heterogeneous fractured domains. The data from two samples define upper intercept ages of 2479 ± 13 Ma and 2463 ± 14 Ma. Zircon grains in the granite show clear oscillatory zoning and their U-Pb data define an upper intercept age of 2506 ± 50 Ma. The Lu-Hf isotopic data on the zircons from the basalts show initial 176Hf/177Hf ratios from 0.280925 to 0.281018. Their εHf(t) values are in the range of − 10.0 to − 6.7. The Hf-depleted model ages (TDM) are between 3038 Ma and 3171 Ma, and Hf crustal model ages (TDMC) vary from 3387–3589 Ma. The zircons from the rhyolites show initial 176Hf/177Hf ratios from 0.280919 to 0.281020 and from 0.281000 to 0.281103, respectively, with εHf(t) values varying from − 10 to − 6.4 and from − 7.5 to − 3.9. Among these, one sample shows TDM between 3038 Ma and 3182 Ma, and TDMC varies from 3377 to 3596 Ma, whereas the other sample shows ages of 2925 Ma and 3072 Ma with TDMC varying from 3208 to 3432 Ma. The initial 176Hf/177Hf ratios of the granites range from 0.280937 to 0.281062 with εHf(t) values of − 8.8 to − 4.3. The TDM shows a range of 2979 Ma and 3170 Ma, and TDMC varies from 3269 to 3541 Ma. The predominant negative εHf(t) values of zircons from these rocks suggest that the source material was evolved from the Paleoarchean crust. The geological, geochemical, and geochronological evidence suggests coeval tectonic and magmatic episodes of volcanic and plutonic activity in an island-arc setting where the arc migrated toward the continental margin and played a significant role in the Neoarchean–Paleoproterozoic crustal growth of the Kotri belt of Central India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号