首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Applied Geochemistry》2005,20(3):519-527
Pleistocene vegetation history on the Chinese Loess Plateau has been traditionally investigated using palynological methods, and questions remain regarding whether an extensive broadleaf deciduous forest ever developed on the loess table under favorable climatic conditions. The authors have employed a C isotope approach to address this question by comparing δ13C values in soil organic matter from different loess ecological domains with known source vegetation to the C isotope values obtained from a paleosol section that can be dated back to 130 ka. The C isotopic compositions of modern soils from the loess table and the loess–desert transition gave δ13C values of −24.5‰ to −18.2‰ and −25.7‰ to −20.7‰, respectively. These C isotopic ratios are consistent with the standing modern vegetation that is dominated by a mixture of C3 and C4 plants and can be distinguished from that in the patchy forest areas where exclusive C3 trees yield a narrow δ13C value range from −26.9‰ to −25‰ (average −26.1‰). Obtained δ13C compositions from paleosols and loess sediments in the Lantian and the Luochuan profiles vary from −24‰ to −16.9‰, indicating a grass-dominated steppe with shifting C3 and C4 contributions controlled mainly by paleoclimatic changes during the late Pleistocene. The present results suggest no extensive forest coverage on the loess table during the past 130 ka even under the most suitable conditions for forest development. This conclusion supports the explanation of natural causes for the development of only patchy forests on the modern loess table and provides critical historical information toward the vegetation restoration project that is currently underway on the Chinese Loess Plateau.  相似文献   

2.
Studies of carbonate carbon isotope of loess/paleosol (δ13Ccarb) in the Chinese Loess Plateau (CLP) have shown δ13Ccarb less negative in loess and more negative in paleosol, which is opposite to that of bulk organic matter. Although some mechanisms have been proposed to explain this inconsistency, few studies have been conducted to investigate how carbonate migration could affect the reliability of utilizing δ13Ccarb as an effective indicator. Here, a loess/paleosol profile with a nodule horizon intercalated in the loess layer, located on the southeastern edge of the CLP, was investigated to understand the influence of carbonate eluviation and reprecipitation on δ13Ccarb along the section. The mean grain size and magnetic susceptibility generally conform to the field observed loess/paleosol stratigraphy. However, carbonate content shows distinct differences in the two sides of the nodule horizon, clearly indicating eluviation along the section. The variation of carbon and oxygen isotopic compositions of soil carbonate (δ13CSC and δ18OSC) and nodule carbonate (δ13CNC and δ18ONC) along the profile does not present a clearly meaningful picture. Generally, δ13CSC and δ18OSC have a similar change trend along the profile and are positively correlated, but there is no apparent relationship between δ13CNC and δ18ONC. More importantly, δ18ONC values fall in the range of δ18OSC, whereas δ13CNC values are much more positive than δ13CSC. Detailed analyses of the data indicate migration of carbonate along the profile, which is an important factor that determines that loess/paleosol δ13Ccarb could not be employed as a high-resolution paleovegetational and paleoenvironmental indicator in the CLP, at least on or below the glacial/interglacial scales.  相似文献   

3.
Eolian dust deposition is intimately related to atmospheric circulation and environmental setting of the source region, and therefore is an invaluable tool for studying the evolutionary history of atmospheric circulation patterns and paleoclimatic change. Identifying the provenance of any eolian deposit is crucial not only for reconstructing the paleoenvironmental history of the dust source region, but also for understanding the paleoclimatic significance of various indices. Loess and paleosol samples from the Garze region on the eastern margin of the Tibetan Plateau(TP) were analyzed for their elemental(major and trace elements) and isotopic(Sm-Nd) geochemistry and compared with those of Northern Chinese(NC) loess formed at the same age. The results show that the geochemical compositions of the Garze loess and paleosol samples are similar to those eolian deposits on the Chinese Loess Plateau(CLP), and also resemble the average UCC. This indicates that the eolian deposits on the eastern margin of the TP were derived from well-mixed sedimentary protoliths that had undergone numerous upper crustal recycling processes, just as with the CLP loess deposits. However, compared with NC loess, the Garze samples have higher ∑REE, Li, Rb, Zr, Cs, Hf and Bi concentrations, higher TiO2/Al2O3, Hf/Nb, La/Nb, Th/Nb and lower K2O/TiO2, Zr/Hf, Ba/Rb ratios. From the Sm-Nd isotopic geochemistry, εNd(0) and 147Sm/144Nd values of Garze loess and paleosol samples are clearly lower than the NC loess. The higher Bi, Zr and Hf concentrations are relevant to the widely distributed acid-magmatic rocks in this region, whereas the higher contents of Li, Cs, Rb are attributed to the high background values of the TP. The geochemical characteristics of the Garze loess and paleosol samples further prove that the local glacial and other Quaternary detrital sediments are predominantly the contributors for the eolian deposits on the eastern margin of the TP. Stable element concentrations and their ratios in the Garze loess and paleosol samples formed at different times have relatively greater variation ranges in comparison with the NC loess, indicating that the source regions for eolian deposits have been unstable since the late Early Pleistocene. We attribute the instability of dust sources to variable earth surface conditions and the changeable TP winter monsoon in direction and intensity, which are in turn related to the uplift of the TP.  相似文献   

4.
The early Aptian abrupt carbon isotope excursion in marine carbonate and sedimentary organic matter reflects a major perturbation in the global carbon cycle. However, until now almost all the evidences of this event came from marine deposits. Here we present organic-carbon isotope (δ13Corg) data from the non-marine Jehol Group in western Liaoning, China. The lacustrine δ13Corg curve is marked by a relative long-lasting δ13Corg minimum followed by two stages of positive δ13Corg excursions that are well correlated with contemporaneous marine records. The carbon isotope correlation shows that the lacustrine strata of the Jehol Group were deposited at the same time of the early Aptian Oceanic Anoxic Event (OAE1a). The relative long-lasting δ13Corg minimum supports the hypothesis that volcanic CO2 emission may have played the main role in triggering the negative δ13C excursion and global warming at the onset of this event. In addition, the onset of δ13Corg minimum is concomitant with the radiation of the Jehol Biota, implying that the evolutionary radiation of the Jehol Biota may have been closely related with the increase in atmospheric CO2 and temperature.  相似文献   

5.
During the Ordovician, huge biological revolutions and environmental changes happened in Earth’s history, including the Great Ordovician Biodiversification Event, global cooling and so on, but the cause of these events remains controversial. Herein, we conducted a paired carbon isotopic analysis of carbonate (δ13Ccarb) and organic matter (δ13Corg) through the Ordovician in the Qiliao section on the Yangtze platform of South China. Our results showed that the δ13Ccarb trend of the Qiliao section can be correlated with local and global curves. The δ13Corg trend seems is less clear than the δ13Ccarb trend for stratigraphic correlations, but some δ13Corg positive excursions in the Middle and Upper Ordovician may be used for correlation studies. These carbon isotopic records may have global significance rather than local significance, revealing several fluctuations to the global carbon cycle during the Ordovician. Several known δ13Ccarb and δ13Corg negative and positive excursions have been recognised in this study, including the early Floian Negative Inorganic Carbon (δ13Ccarb) Excursion (EFNICE), as well as the early Floian Positive Organic Carbon (δ13Ccarb) Excursion, the mid-Darriwilian Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (MDICE), and the early Katian Guttenberg Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (GICE). These positive excursions and a smooth decline trend of δ13Corg values during the early to mid-Floian may imply multiple episodes of enhanced organic carbon burial that began at the early Floian stage, probably resulting in further decline in atmospheric pCO2 and then global cooling.  相似文献   

6.
The Cenomanian–Turonian boundary was characterized by distinctive positive carbon isotope excursions that were related to the formation of widespread oceanic anoxia. High-resolution geochemical proxies (TOC, CaCO3, δ13Corg, and δ13Ccarb) obtained from bulk rock, planktic foraminifers, and inoceramids from four marine marlstone-dominated stratigraphic sections in the Western Canada Sedimentary Basin (WCSB) were used to establish a regional carbon isotope stratigraphic framework and to investigate paleoenvironmental variability in four different depositional settings. Compared to background δ13Corg, (<−27‰) and δ13Ccarb (<2‰) values which were correlative to stable isotope excursions during Oceanic Anoxic Event (OAE) II worldwide, the δ13Corg (>24‰), and δ13Ccarb (>4‰) derived from inoceramid prisms in the studied sections within WCSB, were elevated during the Late Cenomanian–Early Turonian. During this interval, TOC and CaCO3 values which increased sporadically to >40% and 7%, respectively, were not consistent enough to be used for stratigraphic correlations. Based on the δ13Corg excursions, two bentonite beds were regionally correlated across this portion of the Western Interior Seaway (WIS). The eruption associated with the “Red” bentonite occurred approximately coeval with the maximum δ13Corg-excursion during OAE II in the Neocardioceras juddii Zone, whereas the “Blue” bentonite coincides with the termination of OAE II in the latest Watinoceras devonense zone. During the Late Cenomanian–Early Turonian in the WCSB, benthic foraminifers were sparse or totally absent, indicating the existence of fully anoxic bottom-water conditions. Planktic foraminifera were common in the well-oxygenated surface waters. A benthic oxic zone characterized by several agglutinated species occurs in the eastern part of the WSCB at the beginning of OAE II in the Sciponoceras gracile zone. The termination of the OAE II in the WCSB coincides with the first occurrence of small ammonites (Subprionocyclus sp.) in the western part of the basin.  相似文献   

7.
We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit.A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit.Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates.Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (−24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (−22.4‰ to −20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.  相似文献   

8.
The chemical composition of organic matter (Corg, Norg, δ13C, δ15N, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.  相似文献   

9.
Stable carbon isotopic composition of organic matter (δ13Corg) and compound-specific δ13C values of biomarkers from 15 lacustrine source rocks were analyzed to identify the original paleoenvironment and source organisms. The δ13C values of hopanes (δ13Chop) ranged from −68.7‰ to −32‰ and exhibit strongly 13C-depleted values in the lower part of Member 1 of the Nenjiang Formation (K2n1, up to −68.7‰), suggesting an origin from predominantly methanotrophic bacteria. 13C-enriched δ13CGa values and significantly 13C-depleted δ13Chop in K2n1, which coincide with water stratification and an intermittent anoxic photic zone, represents a shallow chemocline. The presence of an intermittent anoxic photic zone, which means that the anoxia expanded into the euphotic zone, is beneficial for OM preservation and results in high values of TOC and HI in this section. However, the absence of gammacerane and 13C-enrichment of δ13Chop in Member 2 of Nenjiang Formation (K2n2) reflect a deeper chemocline, corresponding to relatively oxidizing conditions and low values of TOC and HI. Moreover, the negative correlation of TOC vs δ13Corg and HI vs δ13Corg reflects the control of OM formation by sedimentary environments rather than productivity in the water column. Thus, the depth of the chemocline not only controls the abundance of OM but also affects the development of the microbial community, such as chemoautotrophic bacteria in the deep chemocline and chemoautotrophic and methanotrophic bacteria in the shallow chemocline. Moreover, δ13CGa and δ13C values for 4-methyl steranes are related to water salinity, with a higher salinity accompanied by 13C-enrichment in gammacerane and 4-methyl steranes.  相似文献   

10.
Subaerial exposure and oxidation of organic carbon (Corg)-rich rocks is believed to be a key mechanism for the recycling of buried C and S back to Earth's surface. Importantly, processes coupled to microbial Corg oxidation are expected to shift new biomass δ13Corg composition towards more negative values relative to source. However, there is scarcity of information directly relating rock chemistry to oxidative weathering and shifting δ13Corg at the rock-atmosphere interface. This is particularly pertinent to the sulfidic, Corg-rich alum shale units of the Baltoscandian Basin believed to constitute a strong source of metal contaminants to the natural environment, following subaerial exposure and weathering. Consistent with independent support, we show that atmospheric oxidation of the sulfidic, Corg-rich alum shale sequence of the Cambrian-Devonian Baltoscandian Basin induces intense acid rock drainage at the expense of progressive oxidation of Fe sulfides. Sulfide oxidation takes priority over microbial organic matter decomposition, enabling quantitative massive erosion of Corg without producing a δ13C shift between acid rock drainage precipitates and shale. Moreover, 13C enrichment in inorganic carbon of precipitates does not support microbial Corg oxidation as the predominant mechanism of rock weathering upon exposure. Instead, a Δ34S = δ34Sshale − δ34Sprecipitates ≈ 0, accompanied by elevated S levels and the ubiquitous deposition of acid rock drainage sulfate minerals in deposited efflorescent precipitates relative to shales, provide strong evidence for quantitative mass oxidation of shale sulfide minerals as the source of acidity for chemical weathering. Slight δ15N depletion in the new surface precipitates relative to shale, coincides with dramatic loss of N from shales. Collectively, the results point to pyrite oxidation as a major driver of alum black shale weathering at the rock-atmosphere interface, indicating that quantitative mass release of Corg, N, S, and key metals to the environment is a response to intense sulfide oxidation. Consequently, large-scale acidic weathering of the sulfide-rich alum shale units is suggested to influence the fate and redistribution of the isotopes of C, N, and S from shale to the immediate environment.  相似文献   

11.
The loess/paleosol sequences of Central Asia are continuous terrestrial records of the Quaternary period and enable detailed comparison with paleoclimatic archives such as marine and ice core records in order to reconstruct regional and global paleoclimatic and paleoecological development during the past 130?000 years. Thermoluminescence (TL) and infrared stimulated luminescence (IRSL) dating methods are applied to the extensively studied loess/paleosol sequence of the section at Darai Kalon/Chashmanigar, Tadjikistan, in order to determine a more accurate chronological framework and climatostratigraphic reconstruction for the last interglacial/glacial cycle. Luminescence dating suggests that the loess above the first pedocomplex from the top, PC1, accumulated during the last glacial period. A high accumulation rate of up to 1.20?m per 1000 years was determined for the last glacial loess, especially for the uppermost 5–8?m. PC1 formed during the last interglacial period (oxygen-isotope stage 5). The loess between PC1 and PC2 is designated to be of penultimate glacial deposition age. Infrared stimulated luminescence and TL age estimates are in agreement to 80?000 years before present (BP), indicating a long-distance transport of the aeolian dust prior to deposition. The upper numerical age-limit range is between 300?000 and 450?000 years. However, reliable dating of the loess older than 130?000 years is not possible due to age scatter between samples and an inadequate increase of paleodose with depth. This high-resolution dating study underlines the importance of the section at Darai Kalon and indicates that it is one of the most continuous loess/paleosol records of the Northern Hemisphere. The chronological results are particularly important for the reconstruction of the human evolution in Central Asia, suggesting much older age estimates than previously obtained for most of the archeological key sites associated with PC5 and PC4 in Tadjikistan.  相似文献   

12.
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO2 emission from the huge loess carbon pool.This study aims to determine the potential of loess CO2 emission induced by excavation.Soil CO2 were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO2 and SOC were used to identify their sources.The results showed that the soil CO2 concentrations ranged from 830μL·L-1 to 11190μL·L-1 with an annually reducing trend after excavation,indicating that the human excavation can induce CO2 production in loess profile.Theδ13 C of CO2 ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ13CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ13 C-CO2 in this study has a positive relationship with the reversed CO2 concentration,and it is calculated that 80.22%of the soil CO2 in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO2 to atmosphere.  相似文献   

13.
The contribution of soil organic matter (SOM) to continental margins is largely ignored in studies on the carbon budget of marine sediments. Detailed geochemical investigations of late Quaternary sediments (245-0 ka) from the Niger and Congo deep-sea fans, however, reveal that Corg/Ntot ratios and isotopic signatures of bulk organic matter (δ13Corg) in both fans are essentially determined by the supply of various types of SOM from the river catchments thus providing a fundamentally different interpretation of established proxies in marine sciences. On the Niger fan, increased Corg/Ntot and δ13Corg (up to −17‰) were driven by generally nitrogen-poor but 13C-enriched terrigenous plant debris and SOM from C4/C3 vegetation/Entisol domains (grass- and tree-savannah on young, sandy soils) supplied during arid climate conditions. Opposite, humid climates supported drainage of C3/C4 vegetation/Alfisol/Ultisol domains (forest and tree-savannah on older/developed, clay-bearing soils) that resulted in lower Corg/Ntot and δ13Corg (< −20‰) in the Niger fan record. Sediments from the Congo fan contain a thermally stable organic fraction that is absent on the Niger fan. This distinct organic fraction relates to strongly degraded SOM of old and highly developed, kaolinite-rich ferallitic soils (Oxisols) that cover large areas of the Congo River basin. Reduced supply of this nitrogen-rich and 12C-depleted SOM during arid climates is compensated by an elevated input of marine OM from the high-productive Congo up-welling area. This climate-driven interplay of marine productivity and fluvial SOM supply explains the significantly smaller variability and generally lower values of Corg/Ntot and δ13Corg for the Congo fan records. This study emphasizes that ignoring the presence of SOM results in a severe underestimation of the terrigenous organic fraction leading to erroneous paleoenvironmental interpretations at least for continental margin records. Furthermore, burial of SOM in marine sediments needs more systematic investigation combining marine and continental sciences to assess its global relevance for long-term sequestration of atmospheric CO2.  相似文献   

14.
《Quaternary Science Reviews》2003,22(5-7):569-580
A composite varve-dated 11.4 m long sediment sequence from Lake Holzmaar, situated in the Eifel region of western Germany, was investigated for total organic matter content, total nitrogen content and stable organic carbon isotopes. Mean time resolution is 75 years for TN and 14 years for δ13Corg. On millennial time scales primary production of lacustrine algae strongly depends on the delivery of nutrients from the catchment. The respective carbon isotope record is characterized by marked variations of δ13Corg ranging from −36.0‰ to −27.0‰ and includes a number of pronounced shifts. Reactions of the lacustrine system and the catchment to changes of environmental parameters, e.g. runoff, solar radiation and temperature, induce changes of algal associations and of lacustrine primary production which are reflected in the sediments as carbon isotope variations. Clear evidence of ecosystem reorganizations is detected by the carbon isotope record around 14,200, 10,400, 9600, 5500, 2700, 1700 and 900 varve years BP. In particular, the Holocene events of 9600, around 5500 and 2700 are interpreted as the expression of massive changes of the climate system. The steady rise of δ13Corg values during the mid-Holocene is interpreted as a continuous climatic amelioration reaching an optimum around 6500 varve years BP. Rapid and large changes of δ13Corg values from 2700 varve years BP to the present indicate major disturbances in the catchment area. These are most probably related to deforestation or reforestation and runoff changes, presumably in conjunction with human impact. Carbon isotopes, thus, characterize the Holzmaar ecosystem in time revealing lacustrine palaeoproductivity as well as providing palaeoenvironmental and palaeoclimatic information.  相似文献   

15.
Geochemical and isotopic data for the uppermost 1.2 m of the sediments of the central Santa Monica Basin plain were examined to better understand organic matter deposition and recycling at this site. Isotopic signatures (Δ14C and δ13C) of methane (CH4) and dissolved inorganic carbon (DIC) indicate the occurrence of anaerobic oxidation of CH4 that is fueled by CH4 supplied from a relict reservoir that is decoupled from local organic carbon (Corg) degradation and methanogenesis. This finding was corroborated by a flux budget of pore-water solutes across the basal horizon of the profile. Together these results provide a plausible explanation for the anomalously low ratio between alkalinity production and sulfate consumption reported for these sediments over two decades ago. Shifts in Δ14C and δ13C signatures of Corg have previously been reported across the 20-cm depth horizon for this site and attributed to a transition from oxic to anoxic bottom water that occurred ~350 years BP. However, we show that this horizon also coincides with a boundary between the base of a hemipelagic mud section and the top of a turbidite interval, complicating the interpretation of organic geochemical data across this boundary. Radiocarbon signatures of DIC diffusing upward into surface sediments indicate that remineralization at depth is supported by relatively 14C-enriched Corg within the sedimentary matrix. While the exact nature of this Corg is unclear, possible sources are hemipelagic mud sections that were buried rapidly under thick turbidites, and 14C-rich moieties dispersed within Corg-poor turbidite sections.  相似文献   

16.
The loess–paleosol deposit in Central Asia is a sensitive indicator of the evolution of the quaternary paleoclimate in the Westerlies, providing insight into the quaternary climate history and its relationship with global climatic changes. Based on the geochemical analysis of elemental composition of densely sampled strata from Talede loess–paleosol sequence in the Ili Basin, the results showed that SiO2 had the highest major elements content, followed by Al2O3. The order of compositional abundance of major elements was generally as follows: SiO2 > Al2O3 > CaO > Fe2O3 > MgO > Na2O > K2O. Trace elements (i.e. Rb, Sr, Sc, Ni, Cu, Ga, Mo, Y, Pb, Th) in the paleosol layers (i.e. S 0, S m, S 1) and the loess layer of L 1 were enriched relative to underlain loess (L 2) horizons, except for the contents of Zr, Cs, Nd, and La in paleosol layers. All of geochemical proxies, such as enrichment factor, Rb/Sr ratio, eluvial coefficient (K i ) and chemical weathering index, display no obvious differentiation in the Talede loess–paleosol deposit. The results indicate that the weak chemical weathering, greater evaporation and low effective moisture in Ili Basin, are to a degree weaker than those in the China Loess Plateau and the climate was warm–dry during the interglacial period. In addition, the loess of Ili area is rich in schistose minerals and implies that the loess may come from the deserts of Central Asia and it may be closely related to the widespread aridification of Central Asia.  相似文献   

17.
Carbon isotope ratio (δ13Corg) values of organic matter in lake sediments are commonly used to reconstruct environmental change, but the factors which influence change are varied and complex. Here we report δ13C values for sediments from Erlongwan maar lake in northeast China. In this record, changes in δ13C cannot be explained by simple changes in aquatic productivity. Instead, values were likely influenced by differences in the ratio between planktonic and benthic algae, as indicated by the remains of diatoms. This is because the variation of δ13Corg in algae from different habitats is controlled by the thickness of the diffusive boundary layer, which is dependent on the turbulence of the water. Compared with benthic algae, which grow in relatively still water, pelagic algae are exposed to greater water movement. This is known to dramatically reduce the thickness of the boundary layer and was found to cause even more severe δ13C depletion. In Erlongwan maar lake, low values were linked to the dominance of planktonic diatoms during the period commonly known as the Medieval Warm Period. Values gradually increased with the onset of the Little Ice Age, which we interpret as being driven by an increase in the proportion of benthic taxa, due to effect of the colder climate. The increase in planktonic diatoms at the end of the Little Ice Age, linked to higher temperature and a reduction in ice cover, resulted in a further decline in δ13Corg.  相似文献   

18.
Orbital-scale East Asian Summer Monsoon (EASM) variations inferred from loess deposits in northern China and speleothems from southern China display different dominant periods, complicating our understanding of monsoon response to insolation and ice-volume forcings. Here we integrate a new microcodium δ18O record from a high-resolution last interglacial loess profile with previously published data and provide a composite microcodium δ18O record on the Chinese Loess Plateau (CLP) since the last interglacial. The composite microcodium δ18O record displays distinct precessional cycles, consistent with speleothem δ18O records, but with different amplitude contrast (particularly during the peak interglacials). We propose that both loess and speleothem δ18O records exhibit covariations at precessional timescale oscillations. The discrepancy between loess and speleothem from southern China can be attributed to the influences of other processes besides summer precipitation on the proxies. A slight difference in amplitude between microcodium and speleothem δ18O records implies that the EASM is also influenced by inland surface boundary conditions, which has important impacts on the occurrence of EASM precipitation. Therefore, microcodium δ18O from the Chinese loess–paleosol sequences can be regarded as a representative proxy of EASM precipitation in northern China and then a reliable proxy reflecting the variation of EASM intensity.  相似文献   

19.
Large carbon cycle perturbations associated with the Middle Permian (Capitanian) mass extinction have been widely reported, but their causes and timing are still in dispute. Low resolution carbon isotope records prior to this event also limit the construction of a Middle Permian chemostratigraphic framework and global or local stratigraphic correlation, and hence limit our understanding of carbon cycle and environmental changes. To investigate these issues, we analyzed the 13Corg values from the Middle Permian chert-mudstone sequence (Gufeng Formation) in the Lower Yangtze deep-water basin (South China) and compared them with published records to build a chemostratigraphic scheme and discuss the underlying environmental events. The records show increased δ13Corg values from late Kungurian to early Guadalupian, followed by a decrease to the late Wordian/early Capitanian. The early-mid Capitanian was characterized by elevated δ13Corg values suggesting the presence of the “Kamura Event”: an interval of heavy positive values seen in the δ13Ccarb record. We propose that these heavy Capitanian δ13C values may be a response to a marked decline in chemical weathering rates on Pangea and associated reduction in carbonate burial, which we show using a biogeochemical model. The subsequent negative δ13C excursion seen in some carbonate records, especially in shallower-water sections (and in a muted expression in organic carbon) coincide with the Capitanian mass extinction may be caused by the input of isotopically-light carbon sourced from the terrestrial decomposition of organic matter.  相似文献   

20.
A sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated with the high TOC and negative δ13Corg. These results indicated high river runoff in the PRE area. Peak river discharge occurred during the periods 1900–1750, 1500–1600, 1400–1200, 1000–900 and 750–600 cal yr BP. The main changes recorded in grain-size distributions, TOC contents, and δ13Corg variations appear to be directly related to monsoon precipitation in the sediment source area. An increased East Asian summer monsoon rainfall (EASM) and/or an enhanced East Asian winter monsoon rainfall could result in the increasing of monsoon rainfall. Typhoon related rainfalls could act as positive influence on precipitation levels. The study of the correlations between the rainfall records and ENSO activities revealed a close relationship between the monsoon rainfall in the PRE and the tropical Pacific variations. The frequent occurrence of ENSO might result in the southern migration of the EASM rain belt and lead to more typhoon-derived rainfall in the PRD during the late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号