首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The secondary mineral budget on Earth is dominated by clay minerals, Al-hydroxides, and Fe-oxides, which are formed under the moderate pH, high water-to-rock ratio conditions typical of Earth's near-surface environment. In contrast, geochemical analyses of rocks and soils from landed missions to Mars indicate that secondary mineralogy is dominated by Mg (± Fe, Ca)-sulfates and Fe-oxides. This discrepancy can be explained as resulting from differences in the chemical weathering environment of Earth and Mars. We suggest that chemical weathering processes on Mars are dominated by: (1) a low-pH, sulfuric acid-rich environment in which the stoichiometric dissolution of labile mineral phases such as olivine and apatite (± Fe–Ti oxides) is promoted; and (2) relatively low water-to-rock ratio, such that other silicate phases with slower dissolution rates (e.g., plagioclase, pyroxene) do not contribute substantially to the secondary mineral budget at the Martian surface. Under these conditions, Al-mobilization is limited, and the formation of significant Al-bearing secondary phases (e.g., clays, Al-hydroxides, Al-sulfates) is inhibited. The antiquity of rock samples analyzed in-situ on Mars suggest that water-limited acidic weathering conditions have more than likely been the defining characteristic of the Martian aqueous environment for billions of years.  相似文献   

11.
12.
13.
In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982–1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号