首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The valley‐fill sequence of Nowlands Creek, a 5.5 km2 basin in the Central Lowlands of the Hunter Valley, is characterised by three inset river terraces whose sediments contain either Aboriginal or European artefacts. The highest and oldest terrace is characterised by a well‐developed yellow duplex soil with Aboriginal artefacts in the A horizon. Deposition of the bulk of the terrace sediments occurred before 11 400 yrs BP when Nowlands Creek was a low‐sinuosity, high‐energy, gravel‐bed stream. Texture contrast of the terrace soil is due partly to the superpositioning of Holocene sandy colluvium over Pleistocene fluviatile clay. The middle terrace is characterised by a deep minimal prairie soil containing Aboriginal artefacts. Deposition of the middle‐terrace sediments occurred mainly after 11 400 yrs BP when Nowlands Creek was a small‐capacity, mud‐bed channel with chains of ponds and well‐vegetated banks. The lowest terrace occupies a discontinuous trench incised into the middle terrace and was abandoned by incision between 1902 and 1938 due to open‐cut coal mining. All Aboriginal artefacts found so far are confined to Holocene sediments.  相似文献   

2.
Extensive valley fills have formed at the base of the escarpment in granitic catchments along the south coast of NSW. On the 1865 portion plan, the valley fill surface in the upper part of Wolumla Creek, in the Bega River catchment, was intact, but within a few decades of European settlement of the area the valley fill had been incised. Today the incised channel is up to 10 m deep and 100 m wide. The catchment drains an area of just 18.2 km2. Based on detailed field mapping, with extensive drilling and angering, the volume of the intact valley fill in upper Wolumla Creek in 1865 was approximately 5000 × 103 m3. Between 1865 and the present day, approximately 3500 × 103 m3 of this material has been removed, leaving roughly 1500× 103 m3 of material stored on the valley margins. During an initial period of discontinuous gullying, approximately 230 × 103 m3 of sand accumulated as a floodout. Subsequently, the incised channel became continuous, cutting through the floodout; over 50 per cent of floodout deposits were removed. Flushing of the materials released from upland valley fills has been very efficient in the Wolumla Creek catchment, with a sediment delivery ratio of around 70 per cent. The efficient downstream transfer of deposits reflects bedrock confinement in downstream reaches. Extensive volumes of material have accumulated along the lower reaches of the catchment, exacerbating the transformation to the geomorphic character of the lower Bega River.  相似文献   

3.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

4.
Quaternary evolution of Cedar Creek alluvial fan, montana   总被引:1,自引:0,他引:1  
Cedar Creek alluvial fan is a textbook example of an alluvial fan because of its fan shape with smooth, concentric contours and excellent symmetry. Similar planimetric shapes have been used to infer uniform fan deposition; however, Cedar Creek alluvial fan is composed of four fan deposits of Quaternary age, Qf1 (oldest) to Qf4 (youngest), indicating that fan deposition was nonuniform in both time and space. Field studies indicate that deposition of Cedar Creek alluvial fan is related to glaciofluvial outwash activity during the Pleistocene and upper-fan entrenchment and lower-fan deposition during the Holocene.Qf1 and Qf2 deposits are sub-horizontally bedded, clast-supported sandy gravels uniformly imbricated upfan. Comparison of soil profiles developed in these deposits to radiogenically-dated chronosequences within the region indicates that Qf1 and Qf2 are correlative with Bull Lake and Pinedale-age deposits, respectively. These relationships are substantiated by physical correlation of Qf1 and Qf2 with Bull Lake and Pinedale moraines, respectively, in the Cedar Creek drainage basin. The sedimentology and timing of Qf1 and Qf2 indicate deposition in high-energy, proglacial, braided streams. Furthermore, the present morphology of Cedar Creek alluvial fan was established largely during aggradation of Qf1 and Qf2 when sediment supply to the fan was sufficient to activate 60% to greater than 90% of the total fan area. During Bull Lake glaciation, the apex of Qf1 deposition formed the apex of Cedar Creek alluvial fan as Qf1 covered more than 90% of the present fan area. During Pinedale glaciation, Qf2 deposition shifted downfan; Qf2 is inset into Qf1 above the intersection point, but below the intersection point it eroded and/or buried Qf1 as it activated as much as 60% of the fan area.Qf3 and Qf4, comprising 21% of the fan area, are inset into Qf2 in the lower fan area. Soil development in Qf3 and Qf4 deposits indicate episodic deposition and entrenchment beginning in early Holocene and continuing to present. A post-glacial decrease in sediment supply to Cedar Creek alluvial fan is indicated by sediment storage within the Cedar Creek drainage basin. Decreased sediment supply to the fan resulted in upper-fan entrenchment of Qf2 and deposition of Qf3 and Qf4 in the lower-fan area.  相似文献   

5.
Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.  相似文献   

6.
Stratigraphic, geomorphic, and paleoecological data were collected from upland watersheds in the Great Basin of central Nevada to assess the relationships between late Holocene climate change, hillslope processes and landforms, and modern channel dynamics. These data indicate that a shift to drier, warmer climatic conditions from approximately 2500 to 1300 YPB led to a complex set of geomorphic responses. The initial response was massive hillslope erosion and the simultaneous aggradation of both side-valley alluvial fans and the axial valley system. The final response was fan stabilization and axial channel incision as fine-grained sediments were winnowed from the hillslope sediment reservoirs, and sediment yield and runoff processes were altered. The primary geomorphic response to disturbance for approximately the past 1900 years has been channel entrenchment, suggesting that the evolutionary history of hillslopes has produced watersheds that are prone to incision. The magnitude of the most recent phase of channel entrenchment varies along the valley floor as a function of geomorphic position relative to side-valley alluvial fans. Radial fan profiles suggest that during fan building, fan deposits temporarily blocked the flow of sediment down the main stem of the valley, commonly creating a stepped longitudinal valley profile. Stream reaches located immediately upvalley of these fans are characterized by low gradients and alternating episodes of erosion and deposition. In contrast, reaches coincident with or immediately downstream of the fans exhibit higher gradients and limited valley floor deposition. Thus, modern channel dynamics and associated riparian ecosystems are strongly influenced by landforms created by depositional events that occurred approximately 2000 years ago.  相似文献   

7.
Holocene Alluvial Chronology of One Tree Creek, Southern Alberta, Canada   总被引:1,自引:0,他引:1  
An alluvial chronology for the One Tree Creek basin, a southern tributary of the Red Deer River in southern Alberta, is reconstructed using terrace and palaeochannel remnants and associated radiocarbon dated bones. Prior to the development of One Tree Creek as a northeastward flowing tributary, the prairie surface was scoured by proglacial floodwaters decanting from Glacial Lake Bassano/Patricia in the west. Radiocarbon dates on bones from the bedload gravels in palaeochannels provide a morphochronology of Holocene stream incision. Tentative average incision rates for the middle and upper reaches are calculated at 0.34–0.38 cm a‐1 since 2.8 ka BP and 0.80 – 1.60 cm and 0.81 – 0.96 cm a‐1 for the two periods of 1870 to 1230 BP and 1230 BP to modern respectively. Terraces and palaeochannels dating to the period of highest incision (1870 BP to modern) include numerous reworked bones dating to earlier periods, indicating that fluvial downcutting triggered slope instability and terrace reworking. Although the lower bedrock reaches of the creek may have incised down to the present level of the Red Deer River during early postglacial time, the middle and upper reaches were rapidly incised into Quaternary sediments during the late Holocene when climatic conditions were more humid.  相似文献   

8.
Two adjacent upland floodplains are compared to establish the local response of floodplains to environmental change. Radiocarbon dating, the analysis of sedimentary exposures, terrace mapping, aerial photography and archaeological evidence are used to examine Late Quaternary valley fill sediments on the Afon Tanat and the Afon Vymwy in the Upper Severn Basin, Wales, UK.The alluvial stratigraphy of the two floodplain systems consists of Late Devensian (last glacial) fluvio-glacial sediments at the valley margins deposited under a braided outwash river regime. Holocene age terraces, with floodplain and palaeochannel deposits composed of gravels overlain by silty-sands, are inset into this older unit and were formed by meandering fluvial channel systems. A combination of field and laboratory data demonstrates that from the mid-late Holocene the two floodplain systems had divergent development. The Afon Vyrnwy has remained vertically stable for the last ca. 4000 yrs. whereas the adjacent Afon Tanat continued to be vertically and laterally active.Both floodplain systems have been affected by Late Quaternary climatic fluctuations and anthropogenic activity from the Bronze Age to the Roman period, but local geomorphic gradient controls, combined with a possibly greater focus of anthropogenic activity in the Tanat catchment, may explain the differential evolution of the two systems. The data demonstrate that multiple reach-scale studies are essential for revealing significant stages in the chronology and historical development of fluvial systems.  相似文献   

9.
The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year?1 to 0.9–2.9 mm year?1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year?1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.  相似文献   

10.
The analysis of Holocene geomorphic process activity demands long–term data sets, which are available for the Kärkevagge catchment due to 50 years of intensive geomorphologic field studies. This data set is used in combination with additional field measurements, remote sensing and digital elevation model (DEM) analysis to provide input data for modelling Holocene valley development. On the basis of this information, geomorphic process units (GPUs) are defined by means of GIS modelling. These units represent areas of homogeneous process composition that transfer sediments. Since the data base enables the quantification of single processes, the interaction of processes within the units can also be quantified. Applying this concept permits calculation of recent sediment transfer rates and hence leads to a better understanding of actual geomorphic landscape development activity. To extrapolate these data in time and space the process–related sediments in the valley are analysed for depth and total volume, primarily using geophysical methods. In this fashion the validity of measured process rates is evaluated for the Holocene time scale. Results from this analysis are exemplified in a cross–profile showing some of the principal sediment units in the valley. For example, the measured modern rates on a slush torrent debris fan seem to represent the Holocene mean rate. This approach should also be suitable for revealing Holocene geomorphic landscape development in terms of climate change.  相似文献   

11.
The analysis of Holocene geomorphic process activity demands long–term data sets, which are available for the Kärkevagge catchment due to 50 years of intensive geomorphologic field studies. This data set is used in combination with additional field measurements, remote sensing and digital elevation model (DEM) analysis to provide input data for modelling Holocene valley development. On the basis of this information, geomorphic process units (GPUs) are defined by means of GIS modelling. These units represent areas of homogeneous process composition that transfer sediments. Since the data base enables the quantification of single processes, the interaction of processes within the units can also be quantified. Applying this concept permits calculation of recent sediment transfer rates and hence leads to a better understanding of actual geomorphic landscape development activity. To extrapolate these data in time and space the process–related sediments in the valley are analysed for depth and total volume, primarily using geophysical methods. In this fashion the validity of measured process rates is evaluated for the Holocene time scale. Results from this analysis are exemplified in a cross–profile showing some of the principal sediment units in the valley. For example, the measured modern rates on a slush torrent debris fan seem to represent the Holocene mean rate. This approach should also be suitable for revealing Holocene geomorphic landscape development in terms of climate change.  相似文献   

12.
Comparatively little is known about net aggradation on alluvial fans, despite fan construction wherever sediment-delivery rates from uplands exceed sediment-removal rates from receiving basins. In January 1983, 20 alluvial fans in the forested Cascade foothills, northwest Washington, experienced net aggradation in response to debris torrents and stream floods triggered by intense warm rains falling on antecedent snow. Five trenches were excavated to 5 m depth on the Mills Creek fan to place the 1983 event in temporal perspective. The deposits reflect normal streamflow, hyperconcentrated streamflow and debris torrent (flow) conditions. One trench revealed residues of 7 events since 1720 BP. Net rates of Holocene aggradation, based on sediments overlying late Pleistocene fluvioglacial deposits, average 0.42 m ka-1. Net rates for later Holocene time range from 2.17 m ka-1 since 1720 BP to 2.36 m ka-1 since 430 BP. These recent rates exceed the local value for the entire Holocene and rates for humid temperate fans elsewhere. This suggests that accelerated aggradation may characterize later Holocene times, a view that contrasts with the widespread belief that the later Holocene has been dominated by fan-head incision and net degradation. More comparative data are needed to test this observation. Locally, large debris-producing events in 1917 and 1983 are consistent with later Holocene recurrence intervals and thus appear to be independent of timber harvesting. [Key words: alluvial fan, debris torrent, debris flow, streamflow, Washington.]  相似文献   

13.
Geomorphic data combined with stratigraphic studies provide significant information to constrain timing and amount of fault movement. The lower Narmada valley lies astride the Narmada–Son Fault (NSF), an important ENE–WSW-trending tectonic element responsible for the current intraplate seismicity being experienced in the central part of the Indian plate. Varying nature and degree of tectonic movements along the NSF during Late Pleistocene and Holocene have produced four geomorphic surfaces in the lower Narmada valley: the alluvial plain (S1), ravine surface (S2), a gravelly fan surface (S3) and the valley fill terrace surface (S4). Two major phases of tectonic movements in a compressive stress regime are recorded along the NSF: slow synsedimentary subsidence of the basin during Late Pleistocene due to differential movement, followed by inversion of the basin during the Holocene marked by differential uplift along the NSF. The study suggests that the inversion of the basin is in response to the significant increase in the intensity of compressive stresses in the Indian plate mainly during the Early Holocene. The present incisive drainage and recent seismic activity indicate that the compressive stresses continue to accumulate along the NSF due to continued northward movement of the Indian plate.  相似文献   

14.
Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands.Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.  相似文献   

15.
James C. Knox   《Geomorphology》2006,79(3-4):286
Understanding the time scales and pathways for response and recovery of rivers and floodplains to episodic changes in erosion and sedimentation has been a long standing issue in fluvial geomorphology. Floodplains are an important component of watershed systems because they affect downstream storage and delivery of overbank flood waters, and they also serve as sources and temporary sinks for sediments and toxic substances delivered by river systems. Here, 14C and 137Cs isotopic dating methods are used along with ages of culturally related phenomena associated with mining and agriculture to determine rates of sedimentation and morphologic change for a reach of the upper Mississippi River and adjacent tributaries in southwestern Wisconsin and northwestern Illinois. The most important environmental change that influenced fluvial activity in this region during last 10,000 years involved the conversion of a late Holocene mosaic of prairie and forest to a landscape dominated by cropland and pastureland associated with Euro-American settlement. Results presented herein for the Upper Mississippi Valley (UMV) show that the shift from pre-agriculture, natural land cover to landscape dominance by agricultural land use of the last 175–200 years typically increased rates and magnitudes of floodplain sedimentation by at least an order of magnitude. Accelerated overbank flooding led to increased bank heights on tributary streams and, in turn, contributed to more frequent deep flows of high energy. These high energy flows subsequently promoted bank erosion and lateral channel migration, and the formation of a historical meander belt whose alluvial surface constitutes a new historical floodplain inset against the earlier historical floodplain. The new historical floodplain serves as a “flume-like” channel that provides efficient downstream transport of water and sediment associated with moderate and large magnitude floods. Floodplains on lower tributaries, however, continue to experience rates of overbank sedimentation that are of anomalously high magnitude given improved land cover and land conservation since about 1950. This lower valley anomaly is explained by minimal development of historical (agriculture period) meander belts because of relatively low stream power in these channel and floodplain reaches of relatively low gradient. In general, long-term pre-agriculture rates of vertical accretion between about 10,000 and 200 years ago averaged about 0.2 mm yr− 1 in tributary watersheds smaller than about 700 km2 and about 0.9 mm yr− 1 on the floodplain of the upper Mississippi River where the contributing watershed area increases to about 170,000 km2. On the other hand, rates of historical vertical accretion during the period of agricultural dominance of the last 200 years average between 2 and 20 mm yr− 1, with short episodes of even higher rates during times of particularly poor land conservation practices. Significant hydrologic effects of mining and agricultural started by the 1820s and became widespread in the study region by the mid-19th century. The hydrologic and geomorphic influences of mining were relatively minor compared to those related to agriculture. High resolution dating of floodplain vertical accretion deposits shows that large floods have frequently provided major increments of sedimentation on floodplains of tributaries and the main valley upper Mississippi River. The relative importance of large floods as contributors to floodplain vertical accretion is noteworthy because global atmospheric circulation models indicate that the main channel upper Mississippi River should experience increased frequencies of extreme hydrologic events, including large floods, with anticipated continued global warming. Instrumental and stratigraphic records show that, coincident with global warming, a shift to more frequent large floods occurred since 1950 on the upper Mississippi River, and these floods generally contributed high magnitudes of floodplain sedimentation.  相似文献   

16.
On August 28, 1981, the Crow Canyon drainage basin in central Nevada was burned by a lightning-generated wildfire that destroyed the vegetation cover consisting primarily of juniper trees, sagebrush, and desert grasses. The geomorphic impact of the wildfire was assessed on the basis of aerial photography, measurements of sediment movement on hillslopes using charred tree trunks as erosion indicators, and surveys of the valley floor, axial channel, and alluvial fan. Aerial photographs indicate the valley floor was untrenched prior to the fire. The combination of foliage destruction and heavy runoff in the spring following the wildfire initiated channel downcutting that has now reached as much as 3.9 m in depth. Entrenchment of the valley-fill in the lower 2.2 km of the drainage network produced as much as 48, 142 m3 of sediment. Much of the channel incision occurred during 1982 and 1983, years characterized by above-normal precipitation. Approximately 17,608 m3 of sediment were deposited on a preexisting alluvial fan at the mouth of the basin. Following initial channel entrenchment and deposition on the fan, a spatially out-of-phase episode of channel cutting was initiated on the fan apex, a process that is redistributing sediment down-fan. Thus, one geomorphic disturbance has produced two discrete depositional events on the fan. Moreover, the geomorphic instability was still evident over a decade after the wildfire. [Key words: wildfire, degradation, channel entrenchment, soil erosion, complex-response.]  相似文献   

17.
Temporal patterns in floodplain genesis and alluvial sedimentation in lowlands tropical rain forest zones of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo) based upon 14C age determinations are described.Alluvial low terraces or buried sediments in West Africa yielded ages of 36-21 ka. In west Kalimantan a widespread episode of alluviation has yielded dates of 54-51 ka. The 20-13 ka interval was characterised by channel incision with valley floor erosion and neither region records sedimentation. Holocene alluvial sedimentation and floodplain construction in West Africa occurred during two temporal intervals: 10-7 ka and 4 ka to present and in western Kalimantan in response to early Holocene sea level rise followed by late Holocene regression and coastal outgrowth.The clustering of 14C dates closely corresponds to regional lake level fluctuations and vegetational changes and to global indications of climatic change. We propose that periods of more frequent episodes of accelerated floodplain erosion and reconstitution, channel morpho-sedimentary activity and alluvial accumulation (1) are responses to interstadial and interglacial periods of higher precipitation following intervening periods of cooler and drier conditions; and (2) may be synchronous during the last 60 ka throughout the African and Asian inner humid lowland tropics.  相似文献   

18.
In the Solway Firth — Morecambe Bay region of Great Britain there is evidence for heightened hillslope instability during the late Holocene (after 3000 cal. BP). Little or no hillslope geomorphic activity has been identified occurring during the early Holocene, but there is abundant evidence for late Holocene hillslope erosion (gullying) and associated alluvial fan and valley floor deposition. Interpretation of the regional radiocarbon chronology available from organic matter buried beneath alluvial fan units suggests much of this geomorphic activity can be attributed to four phases of more extensive gullying identified after 2500–2200, 1300–1000, 1000–800 and 500 cal. BP. Both climate and human impact models can be evoked to explain the crossing of geomorphic thresholds: and palaeoecological data on climatic change (bog surface wetness) and human impact (pollen), together with archaeological and documentary evidence of landscape history, provide a context for addressing the causes of late Holocene geomorphic instability. High magnitude storm events are the primary agent responsible for gully incision, but neither such events nor cooler/wetter climatic episodes appear to have produced gully systems in the region before 3000 cal. BP. Increased gullying after 2500–2200 cal. BP coincides with population expansion during Iron Age and Romano-British times. The widespread and extensive gullying after 1300–1000 cal. BP and after 1000–800 cal. BP coincides with periods of population expansion and a growing rural economy identified during Norse times, 9–10th centuries AD, and during the Medieval Period, 12–13th centuries AD. These periods were separated by a downturn associated with the ‘harrying of the north’ AD 1069 to 1070. The gullying episode after 500 cal. BP also coincides with increased anthropogenic pressure on the uplands, with population growth and agricultural expansion after AD 1500 following 150 years of malaise caused by livestock and human (the Black Death) plagues, poor harvests and conflicts on the Scottish/English border. The increased susceptibility to erosion of gullies is a response to increased anthropogenic pressure on upland hillslopes during the late Holocene, and the role of this pressure appears crucial in priming hillslopes before subsequent major storm events. In particular, the cycles of expansion and contraction in both population and agriculture appear to have affected the susceptibility of the upland landscape to erosion, and the hillslope gullying record in the region, therefore, contributes to understanding of the timing and spatial pattern of human exploitation of the upland landscape.  相似文献   

19.
Variations in the coupling of sediment transfer between different parts of a fluvial catchment, e.g., hillslope to axial stream, can hamper understanding but are an integral part of the geomorphological record. Depositional environments respond to a combination of land use, climate, storms (floods), and autogenic conditioning. The distribution of sediment in the upland landscapes of NW England is out of equilibrium with contemporary climate and geomorphological processes; more a function of peri- and paraglacial mobilisation of glacigenic deposits. Soil and vegetation development after deglaciation have interrupted any progression toward sediment exhaustion with sediment release controlled largely by extrinsic perturbation, with late Holocene anthropogenic activity, climate and extreme hydrological events the likely candidates. This paper presents a new radiocarbon-dated Holocene geomorphological succession for the River Hodder (NW England), alongside evaluating new palaeoecological and geoarchaeological data to discern the impacts of human activity. These data show a late Holocene expansion in human occupation and use of the landscape since the Iron Age (700–0 cal. B.C.), with more substantial changes in the character and intensity of upland land use in the last 1300 years. The geomorphological responses in the uplands were the onset of considerable and widespread hillslope erosion (gullying) and associated alluvial fan development. Interpretation of the regional radiocarbon chronology limits gullying to four, more extensive and aggressive phases after 500 cal. B.C. The downstream alluvial system has responded with considerable valley floor deposition and lateral channel migration that augmented sediment supply by remobilising the existing floodplain terraces and led to the aggradation of a series of inset alluvial terraces. The timing of these changes between states of aggradation and incision in alluvial reaches reflects the increased connectivity between the hillslope and alluvial systems. Aspects of both the regional climate and land use histories are conducive to increasing discharge and sediment flux, but the region wide lowering of erosion thresholds appears a key driver conditioning these sediment-rich conditions and producing a landscape that was more susceptible to erosion under lower magnitude flows.  相似文献   

20.
We present an interpolation model that describes Holocene groundwater level rise and the creation of accommodation space in 3D in the Rhine‐Meuse delta – the Netherlands. The model area (ca. 12 400 km2) covers two palaeovalleys of Late Pleistocene age (each 30 km wide) and the overlying Holocene deposits of the Rhine‐Meuse delta, the Holland coastal plain, and the Zuiderzee former lagoon. Water table rise is modelled from 10 800 to 1000 cal. BP, making use of age‐depth relations based on 384 basal peat index points, and producing output in the form of stacked palaeo groundwater surfaces, groundwater age‐depth curves, and voxel sets. These products allow to resolve (i) regional change and variations of inland water table slopes, (ii) spatial differences in the timing and pacing of transgression, and (iii) analysis of interplay of coastal, fluvial and subsidence controls on the provision of accommodation space. The interpolation model is a multi‐parameter trend function, to which a 3D‐kriging procedure of the residuals is added. This split design deploys a generic approach for modelling provision of accommodation space in deltas and coastal lowlands, aiming to work both in areas of intermediate data availability and in the most data‐rich environments. Major provision of accommodation space occurred from 8500 cal BP onwards, but a different evolution occurred in each of the two palaeovalleys. In the northern valley, creation of accommodation space began to stall at 7500 cal BP, while in the southern valley provision of new accommodation space in considerable quantities continued longer. The latter is due to the floodplain gradient that was maintained by the Rhine, which distinguishes the fluvial deltaic environment from the rest of the back‐barrier coastal plain. The interpolation results allow advanced mapping and investigation of apparent spatial differences in Holocene aggradation in larger coastal sedimentary systems. Furthermore, they provide a means to generate first‐order age information with centennial precision for 3D geological subsurface models of Holocene deltas and valley fills. As such, the interpolation is of use in studies into past and present land subsidence and into low land sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号