首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a multiwavelength analysis of a long-duration, white-light solar flare (M8.9/3B) event that occurred on 04 June 2007 from AR NOAA 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE, and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the center of the active region, surrounded by opposite-polarity field regions. MDI images of the active region show a considerable amount of changes in the small positive-polarity sunspot of δ configuration during the flare event. SOT/G-band (4305 Å) images of the sunspot also suggest the rapid evolution of this positive-polarity sunspot with highly twisted penumbral filaments before the flare event, which were oriented in a counterclockwise direction. It shows the change in orientation, and also the remarkable disappearance of twisted penumbral filaments (≈35?–?40%) and enhancement in umbral area (≈45?–?50%) during the decay phase of the flare. TRACE and SECCHI observations reveal the successive activation of two helically-twisted structures associated with this sunspot, and the corresponding brightening in the chromosphere as observed by the time-sequence of SOT/Ca?ii H line (3968 Å) images. The secondary, helically-twisted structure is found to be associated with the M8.9 flare event. The brightening starts six?–?seven minutes prior to the flare maximum with the appearance of a secondary, helically-twisted structure. The flare intensity maximizes as the secondary, helically-twisted structure moves away from the active region. This twisted flux tube, associated with the flare triggering, did not launch a CME. The location of the flare activity is found to coincide with the activation site of the helically-twisted structures. We conclude that the activation of successive helical twists (especially the second one) in the magnetic-flux tubes/ropes plays a crucial role in the energy build-up process and the triggering of the M-class solar flare without a coronal mass ejection (CME).  相似文献   

2.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube.  相似文献   

3.
Empirical functions approximating the dependences of total sunspot area A on relative sunspot number W and group sunspot number GN have been found. In the function A(W), allowance for its dependence on the secular activity cycle has been made; it is shown that this allowance is not needed for the function A(GN). The yearly mean A for 1700–1874 have been reconstructed using these functions and the available W and GN time series. Having supplemented the original data with archival observations, we have been able to reconstruct the monthly mean A W since 1821. We discuss the causes of the systematic difference between the reconstructions using W and GN.  相似文献   

4.
We have detected several periodicities in the solar equatorial rotation rate of sunspot groups in the catalog Greenwich Photoheliographic Results (GPR) during the period 1931?–?1976, the Solar Optical Observing Network (SOON) during the period 1977?–?2014, and the Debrecen Photoheliographic Data (DPD) during the period 1974?–?2014. We have compared the results from the fast Fourier transform (FFT), the maximum entropy method (MEM), and the Morlet wavelet power-spectra of the equatorial rotation rates determined from SOON and DPD sunspot-group data during the period 1986?–?2007 with those of the Mount Wilson Doppler-velocity data during the same period determined by Javaraiah et al. (Solar Phys. 257, 61, 2009). We have also compared the power-spectra computed from the DPD and the combined GPR and SOON sunspot-group data during the period 1974?–?2014 to those from the GPR sunspot-group data during the period 1931?–?1973. Our results suggest a ~?250-day period in the equatorial rotation rate determined from both the Mt. Wilson Doppler-velocity data and the sunspot-group data during 1986?–?2007. However, a wavelet analysis reveals that this periodicity appears mostly around 1991 in the velocity data, while it is present in most of the solar cycles covered by the sunspot-group data, mainly near the minimum epochs of the solar cycles. We also found the signature of a period of ~?1.4 years in the velocity data during 1990?–?1995, and in the equatorial rotation rate of sunspot groups mostly around the year 1956. The equatorial rotation rate of sunspot groups reveals a strong ~?1.6-year periodicity around 1933 and 1955, a weaker one around 1976, and a strong ~?1.8-year periodicity around 1943. Our analysis also suggests periodicities of ~?5 years, ~?7 years, and ~?17 years, as well as some other short-term periodicities. However, short-term periodicities are mostly present at the time of solar minima. Hence, short-term periodicities cannot be confirmed because of the larger uncertainty in the data.  相似文献   

5.
Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev?–?Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.  相似文献   

6.
A simple energy model of a sunspot as a compact magnetic feature is described where the main energy contribution is provided by the coolest and most compressed part of the magnetic force tube of the spot at depths ranging from Wilson’s depression level (300–500 km) down to 2–3 thousand km. The equilibrium and stability conditions for such a system are analyzed using the variation principle, and oscillations of the system as a whole about the inferred equilibrium position are studied. The sunspot is shown to be stable in the magnetic field strength interval from 0.8–1 to 4–5 kG. The dependence of the eigenfrequency on magnetic field strength ω(B) is computed for the main oscillatory mode, where only the umbra of the sunspot takes part in oscillations, ω = ω 1 (B). Lower subharmonics may appear in the case where penumbra too becomes involved in the oscillatory process: ω 2 = ω 1/2, ω 3 = ω 1/3. Theoretical curves agree well with the observational data obtained in Pulkovo using various independent methods: from temporal variations of sunspot magnetic field and from line-of-sight-velocity measurements. The periods of oscillations found range from 40 to 200 minutes.  相似文献   

7.
A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHO/LASCO catalog in the period of time 1996?–?2004, were selected based on having at least 11 height–time measurements. This selection criterion allows us to construct at least ten-point speed–distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodic oscillations in the speed of the CMEs a sinusoidal function was fitted to speed–distance profiles and the speed–time profiles. Of the considered events 22 % revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to \(87~\mbox{km}\,\mbox{s}^{-1}\) and period \(7.8 R _{\odot}/241~\mbox{min}\) (in distance/time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology).  相似文献   

8.
We investigate the magnetic fields and total areas of mid- and low-latitude sunspots based on observations at the Greenwich and Kislovodsk (sunspot areas) and Mount Wilson, Crimean, Pulkovo, Ural, IMIS, Ussuriysk, IZMIRAN, and Shemakha (magnetic fields) observatories. We show that the coefficients in the linear form of the dependence of the logarithm of the total sunspot area S on its maximum magnetic field H change with time. Two distinct populations of sunspots are identified using the twodimensional H–log S occurrence histogram: small and large, separated by the boundaries log S = 1.6 (S = 40 MSH) and H = 2050 G. Analysis of the sunspot magnetic flux also reveals the existence of two lognormally distributed populations with the mean boundary between them Φ = 1021 Mx. At the same time, the positions of the flux occurrence maxima for the populations change on a secular time scale: by factors of 4.5 and 1.15 for small and large sunspots, respectively. We have confirmed that the sunspots form two physically distinct populations and show that the properties of these populations change noticeably with time. This finding is consistent with the hypothesis about the existence of two magnetic field generation zones on the Sun within the framework of a spatially distributed dynamo.  相似文献   

9.
The Sun’s polar fields play a leading role in structuring the large-scale solar atmosphere and in determining the interplanetary magnetic field. They are also believed to supply the seed field for the subsequent solar activity cycle. However, present-day synoptic observations do not have sufficient spatial resolution or sensitivity to diagnose accurately the high-latitude magnetic vector field. The high spatial resolution and sensitivity of the full-Stokes observations from the Hinode Solar Optical Telescope Spectro-Polarimeter, observing the poles long-term, allows us to build up a detailed picture of the Cycle 24 polar field reversal, including the changing latitude distribution of the high-latitude flux, and to study the effect on global coronal field models. The Hinode observations provide detailed information on the dominant facular-scale magnetic structure of the polar fields, and their field inclination and flux distribution. Hybrid synoptic magnetograms are constructed from Hinode polar measurements and full-disk magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), and coronal potential field models are calculated. Loss of effective spatial resolution at the highest latitudes presents complications. Possible improvements to synoptic polar data are discussed.  相似文献   

10.
Radial velocities for 15 stars with high proper motions were measured as a result of spectral observations, conducted with the NES echelle spectrograph of the 6-m BTA telescope in the wavelength range of 3550–5100 Å with a spectral resolution of R=60000. The standard deviation of the measured velocity does not exceed σ ≤ 0.9 km/s for the stars with metallicity [Fe/H]? ?1, and σ ≤ 1.1 km/s for [Fe/H]? ?1. The heliocentric velocities measured with high accuracy in combination with trigonometrical parallaxes and proper motions from the HIPPARCOS catalog allowed us to determine the distances and parameters of the galactic orbits of the stars under study. In general they are located within 100 pc; the binarity of several program stars is confirmed.  相似文献   

11.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   

12.
We observed a cluster of extremely bright penumbral grains located at the inner limb‐side penumbra of the leading sunspot in active region NOAA 10892. The penumbral grains in the cluster showed a typical peak intensity of 1.58 times the intensity I0 of the granulation surrounding the sunspot. The brightest specimen even reached values of 1.8–2.0 I0, thus, exceeding the temperatures of the brightest granules in the immediate surroundings of the sunspot. We find that the observed sample of extremely bright penumbral grains is an intermittent phenomenon, that disappears on time scales of hours. Horizontal flow maps indicating proper motions reveal that the cluster leaves a distinct imprint on the penumbral flow field. We find that the divergence line co‐located with the cluster is displaced from the middle penumbra closer towards the umbra and that the radial outflow velocities are significantly increased to speeds in excess of 2 km s–1. The extremely bright penumbral grains, which are located at the inner limb‐side penumbra, are also discernible in offband Hα images down to Hα ± 0.045 nm. We interpret the observations in the context of the moving flux tube model arguing that hotter than normal material is rapidly ascending along the inner footpoint of the embedded flux tube, i.e., the ascending hot material is the cause of the extremely bright penumbral grains. This study is based on speckle‐reconstructed broad‐band images taken at 600 nm and chromospheric Hα observations obtained with two‐dimensional spectroscopy. All data were taken with adaptive optics under very good seeing conditions at the Dunn Solar Telescope, National Solar Observatory/Sacramento Peak, New Mexico on 2006 June 10. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe I line at 15648 Å The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30°. Chromospheric Hα and He II 304 Å filtergrams revealed three superpenumbral fibrils on the limb‐side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral counterpart of the light bridge. An intense, elongated brightening was observed along this fibril that was co‐spatial with the intersecting penumbral filaments in the photosphere. Our results suggest that the disruption in the sunspot magnetic field at the location of the light bridge could be the source of reconnection that led to the intense chromospheric brightening and facilitated the supply of cool material in maintaining the overlying superpenumbral fibrils. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Assuming that the energy gain by cosmic-ray (CR) particles is a stochastic process with stationary increments, we derive expressions for the shape of their energy spectrum up to energies E ~ 1018 eV. In the ultrarelativistic case under study, the energy is proportional to the momentum, whose time derivative is the force. According to the Fermi mechanism, a particle accelerates when it passes through a system of shock waves produced by supernova explosions. Since these random forces act on time scales much shorter than the particle lifetime, we assume them to be delta-correlated in time. In this case, due to the linear energy-momentum relationship, the mean square of the energy (increments) is proportional to the differential scale τ(E) ~ (≥E), where τ (≥E) is the cumulative time it takes for a particle to gain an energy ≥E. The probability of finding a particle with energy ≥E somewhere in the system is inversely proportional to the time it takes to gain the energy E. To estimate an upper limit for the space number density of CR particles, we use estimates of the CR volume energy density, a quantity known for our Galaxy. It is taken to be constant in the range 10 GeV ≤ E ≤ 3 × 106 GeV, where the index of the energy spectrum was found to be ?8/3 ≈ ?2.67 against its empirical value of ?2.7. In the range 3 × 106 GeV ≤ E < 109 GeV, the upper limit for the volume energy density is estimated by using the results from the previous range to be ?28/9 ≈ ?3.11 against its empirical value of ?3.1. The numerical coefficients in the suggested shapes of the spectrum can be determined by comparison with observational data. Thus, the CR energy spectrumis the result of the random walks of ultrarelativistic particles in energy/momentum space caused by the Fermi mechanism.  相似文献   

15.
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.  相似文献   

16.
The theory of Yang, Chang, and Harvey (1983) is used to perform this analysis of the big active region AR 4711 of February, 1986, which produced many big and strong flares with proton events, SIDs and other significant geophysical effects. The various physical quantities are calculated, yielding for M a value up to 5.36 × 1032 erg, sufficient to supply the energies of the observed flare activities in this active region. Observations of the twisting of the entire quadrupolar sunspot group and the variations of the magnetic energies with dates all agree with our theoretical expectations.It is found that the maximum of the f number of flare activity occurred about one day later than the maximum of M, i.e., the release of free magnetic energy to produce flare activity requires a time interval of about one day. This, together with the formula of M can be useful in solar prediction work.Similar to the famous active region of August 1972 (McMath 11976), the separation of both footpoints of the new emerging magnetic flux along the neutral line of the old bipolar group led to the formation of a compact quadrupolar sunspot group, with strong twisting of penumbral filaments.Visiting Professor from the Astrophysics Division, Geophysics Department, Peking University, Beijing, China.  相似文献   

17.
Artifacts could mislead interpretations in astrophysical observations. A thorough understanding of an instrument will help in distinguishing physical processes from artifacts. In this article, we investigate an artifact of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory. Time-series data and wavelet spectra revealed periodic intensity perturbations in small regions over the entire image in certain AIA extreme ultraviolet (EUV) passbands at a period of about 45 seconds. These artificial intensity variations are prominently detected in regions with sharp intensity contrast, such as sunspot light bridges. This artifact was caused by a periodic pointing wobble of the two AIA telescopes ATA 2 (193 and 211 Å channels) and ATA 3 (171 Å and UV channels), to a lesser extent, while the other two telescopes were not found to be affected. The peak-to-peak amplitude of the wobble was about 0.2 pixel in ATA 2 and 0.1 pixel in ATA 3. This artifact was intermittent and affected the data of seven months from 18 January to 28 August 2012, as a result of a thermal adjustment to the telescopes. We recommend that standard pointing-correction techniques, such as local correlation tracking, should be applied before any detailed scientific analysis that requires sub-pixel pointing accuracy. Specifically, this artificial 45-second periodicity was falsely interpreted as abnormal sub-minute oscillations in a light bridge of a sunspot (Yuan and Walsh in Astron. Astrophys.594, A101, 2016).  相似文献   

18.
We show that the Wolf sunspot numbers W and the group sunspot numbers GSN are physically different indices of solar activity and that it is improper to compare them. Based on the approach of the so-called “primary” indices from the observational series of W(t) and GSN(t), we suggest series of yearly mean sunspot areas beginning in 1610 and monthly mean sunspot areas beginning in 1749.  相似文献   

19.
We study the pattern and behavior of a rotating sunspot in Active Region 10930. The rotational angular speed has been extracted from the apparent motions of the sunspot determined by applying a new optical technique – called non-linear affine velocity estimator (NAVE) – to high-resolution G-band images taken by the Solar Optical Telescope (SOT) onboard the Hinode satellite. The structure and dynamics of coronal loops in this active region have been examined using the images obtained by the X-Ray Telescope (XRT) and the spectral data taken by the Extreme-ultraviolet Imaging Spectrometer (EIS), both also onboard Hinode. Our results are summarized as follows: i) The small sunspot of positive polarity rotated counterclockwise about its center by 540° during the period of five days. ii) Its angular velocity varied with the azimuth angle as well as the radial distance, being affected by the asymmetric shape of the umbra. iii) The angular velocity increased up to 8° h−1 until 13 December as the sunspot grew, and then decreased rapidly down to 3° h−1 on the next day as the sunspot decayed. iv) The coronal loops that connected the two sunspots became sigmoidal in shape. v) The coronal emissions from the regions around the rotating sunspot were blueshifted, which may indicate the expansion of the coronal loops. Our results suggest that the rotation of the sunspot may be closely related to the dynamic development of emerging twisted magnetic fields.  相似文献   

20.
Photometric observations of the variable star EP Lyr were performed with a CCD photometer during the observing season of 2002. Analysis of these observations together with published data has confirmed the mean period of the main variability cycle P = 83.d248 over almost 100 years. The periodicity of the variations in the main cycle is investigated on the basis of O-C diagrams. The time scale of its variations ranges from 1–2 to 8–20 thousand days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号