首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sm–Nd, Lu–Hf, Rb–Sr and SIMS U–Pb data are presented for meta‐gabbroic eclogites from the eclogite type‐locality ( Haüy, 1822 ) Kupplerbrunn–Prickler Halt and other areas of the Saualpe (SE Austria) and Pohorje Mountains (Slovenia). Mg‐rich eclogites derived from early gabbroic cumulates are kyanite‐ and zoisite rich, whereas eclogites with lower Mg contents contain clinozoisite ± kyanite. Calculated PT conditions at the final stages of high‐pressure metamorphism are 2.2 ± 0.2 GPa at 630–740 °C. Kyanite‐rich eclogites did not yield geologically meaningful Sm–Nd ages due to incomplete Nd isotope equilibration, whereas Sm–Nd multifraction garnet–omphacite regression for a low‐Mg eclogite from Kupplerbrunn yields an age of 91.1 ± 1.3 Ma. The Sm–Nd age of 94.1 ± 0.8 Ma obtained from the Fe‐rich core fraction of this garnet dates the initial stages of garnet growth. Zircon that also crystallized at eclogite facies conditions gives a weighted mean U–Pb SIMS age of 88.4 ± 8.1 Ma. Lu–Hf isotope analysis of a kyanite–eclogite from Kupplerbrunn yields 88.4 ± 4.7 Ma for the garnet–omphacite pair. Two low‐Mg eclogites from the Gertrusk locality of the Saualpe yield a multimineral Sm–Nd age of 90.6 ± 1.0 Ma. A low‐Mg eclogite from the Pohorje Mountains (70 km to the SE) gives a garnet–whole‐rock Lu–Hf age of 93.3 ± 2.8 Ma. These new age data and published Sm–Nd ages of metasedimentary host rocks constrain the final stages of the eo‐Alpine high‐pressure event in the Saualpe–Pohorje part of the south‐easternmost Austroalpine nappe system suggesting that garnet growth in the high‐pressure assemblages started at c. 95–94 Ma and ceased at c. 90–88 Ma, probably at the final pressure peak. Zircon and amphibole crystallization was still possible during incipient isothermal decompression. Rapid exhumation of the high‐pressure rocks was induced by collision of the northern Apulian plate with parts of the Austroalpine microplate, following Jurassic closure of the Permo‐Triassic Meliata back‐arc basin.  相似文献   

2.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

3.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

4.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

5.
Eclogites are found as lenses or layers in the Precambrian gneiss terrain of the Bitlis Massif in eastern Turkey. Kyanite-eclogites from the region of Gablor Hill in the Bitlis Massif exhibit relatively minor alteration, and consist of garnet, omphacite, kyanite, zoisite, calcic amphibole, phengite, rutile and quartz. In terms of geological setting and mineral compositions, Gablor eclogites are very similar to eclogites from high-grade gneiss terrains. Metamorphic conditions during the eclogite crystallisation are determined as 625±35° C and 16±3 kbars. The coexistence of white mixa, omphacite and kyanite constrains between 0.4 and 1. Primary calcic amphiboles from the Gablor eclogites exhibit conflicting textures, indicating stable coexistence with, as well as growth from omphacite and garnet. This is explained by a buffering reaction between amphibole, garnet, omphacite, zoisite and kyanite during the eclogite crystallisation, whereby is controlled and buffered by the mineral assemblage.  相似文献   

6.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

7.
Abstract Paragonite in textural equilibrium with garnet, omphacite and kyanite is found in two eclogites in the ultrahigh-pressure metamorphic terrane in Dabie Shan, China. Equilibrium reactions between paragonite, omphacite and kyanite indicate a pressure of about 19 kbar at c . 700° C. However, one of the paragonite eclogites also contains clear quartz pseudomorphs after coesite as inclusions in garnet, suggesting minimum pressures of 27 kbar at the same temperature. The disparate pressure estimates from the same rock suggest that the matrix minerals in the ultrahigh-pressure eclogites have recrystallized at lower pressures and do not represent the peak ultrahigh-pressure assemblages. This hypothesis is tested by calibrating a garnet + zoisite/clinozoisite + kyanite + quartz/coesite geobarometer and applying it to the appropriate eclogite facies rocks from ultrahigh- and high-pressure terranes. These four minerals coexist from 10 to 60 kbar and in this wide pressure range the grossular content of garnet reflects the equilibrium pressure on the basis of the reaction zoisite/clinozoisite = grossular + kyanite + quartz/coesite + H2O. The results of the geobarometer agree well with independent pressure estimates from eclogites from other orogenic belts. For the paragonite eclogites in Dabie Shan the geobarometer indicates pressures in the quartz stability field, confirming that the former coesite-bearing paragonite-eclogite has re-equilibrated at lower pressures. On the other hand, garnets from other coesite-bearing but paragonite-free kyanite-zoisite eclogites show a very wide variation in grossular content, corresponding to a pressure variation from coesite into the quartz field. This wide variation, partly due to a rimward decrease in grossular component in garnet, is caused by partial equilibration of the mineral assemblage during the exhumation.  相似文献   

8.
Gabbros and eclogites occur closely associated in a 200-km-long and up to 40-km-wide area of the Zambezi Belt in central Zambia. This area is interpreted to represent part of a late Precambrian suture zone, with the mafic rocks being relics of subducted oceanic crust. Gradual stages of prograde transformation from gabbro to eclogite are preserved by disequilibrium textures of incomplete reactions. This resulted in kyanite–omphacite-bearing assemblages for eclogites that have Al-poor bulk compositions. Undeformed eclogites typically preserve features of a former gabbroic texture, reflected by replacements of plagioclase and magmatic pyroxene by eclogite facies minerals. Textures of deformed eclogites range from sheared porphyroclastic to porphyroblastic. Relics of magmatic pyroxene are common and complete eclogitisation occurred only in millimetre to centimetre-scale domains in most of the rocks. No evidence for prograde blueschist or amphibolite facies mineral assemblages was found in eclogites. In contrast, the fine grained intergrowth of omphacite, garnet, kyanite and quartz, which replace former plagioclase or was formed in the pressure shadow of magmatic pyroxene relics, indicates that eclogitisation might have affected the gabbroic protoliths directly without any significant intervening metamorphic reactions. Eclogitisation took place under P–T conditions of 630–690 °C and 26–28 kbar, suggesting a large overstepping (>10 kbar) of reaction boundaries. Eclogitisation was initialised and accompanied by a channelised fluid flow resulting in veins with large, subhedral grains of omphacite, kyanite and garnet. The gabbro-to-eclogite transformation was enhanced by a fluid which allowed the necessary material transport for the dissolution–precipitation mechanism that characterises the metamorphic mineral replacements. The process of eclogitisation was limited by reaction kinetics and dissolution–precipitation rates rather than by the metamorphic P–T conditions. Even though ductile deformation occurred and equilibrium phase boundaries were overstepped, the infiltration of fluids was necessary for triggering the gabbro-to-eclogite transformation.Editorial responsibility: J. Hoefs  相似文献   

9.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

10.
A ternary solid solution model for omphacite with the end-members jadeite (NaAlSi2O6), diopside (CaMgSi2O6) and hedenbergite (CaFeSi2O6) was derived from experimental data from the literature. The subregular solution model, fitted by linear programming, is best suited to omphacites with very little aegirine component in common eclogites. Applying this solution model to the calculation of equilibrium phase diagrams of eclogites from the Adula nappe (Central Alps, Switzerland) results in large stability fields for common eclogite assemblages (garnet+omphacite+quartz+H2O±kyanite). Within this field the compositions of garnet and omphacite show very little variation. A precise determination of the peak-pressure and temperature is not possible. The occurrence of amphibole, overgrowing the peak-pressure assemblage in fresh eclogite, suggests retrograde re-equilibration, still under eclogite facies conditions. The computation of isopleths for garnet and pyroxene end-members allows the estimation of the pressure and temperature conditions of this re-equilibration event (19–21  kbar, c .  700 °C).  相似文献   

11.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

12.
In the Sesia Zone, Western Alps, a large volume of orthogneissformed as a result of eclogite fades metamorphism and deformationof quartz diorite during early Alpine underthrusting and subduction.Rare lenses of undeformed metaquartz diorite, preserved withinthe orthogneiss, represent an early stage in the evolution ofthis latter rock type. The metamorphic and microstructural evolutionof the orthogneiss in the eclogite fades has been reconstructedfrom studies of gradational contacts between undeformed andstrongly deformed rocks. High pressure transformations of the original igneous plagioclase+ biotite + quartz assemblage to jadeitic pyroxene (Jd0.95 –0.85+ zoisite + quartz + garnet + 2 muscovites developed prior todeformation. Slow intergranular diffusion resulted in a stateof disequilibrium between small textural domains in the metaquartzdiorite. The compositions of the phases of the undeformed metaquartzdiorite do not reflect the bulk rock composition, but were controlledby their position relative to reactant phases. The jadeiticpyroxenes, for example, formed in localized domains which originallyconsisted of sodic plagioclase whereas omphacite was the equilibriumpyroxene for the bulk rock composition. Mineralogical changes which occurred during subsequent deformationof the metaquartz diorite are interpreted as resulting froma progressive enlargement of equilibrium domains and the partialequilibration of mineral compositions to the bulk rock compositionrather than from changes in pressure and temperature. Initiallyduring high-strain deformation, fine-grained aggregates of jadeiticpyroxene + quartz + zoisite (originally pseudomorphing plagioclase)are inferred to have deformed by a mechanism of grain boundarysliding accommodated by diffusive mass transfer. Muscovite andgarnet compositions homogenized during the deformation but dueto slow intracrystalline diffusion, pyroxene compositions (Jd0.95–0.80) remained metastable. The coarsening of pyroxeneeventually terminated deformation by grain boundary slidingand this mineral subsequently deformed by intracrystalline plastidty.This latter process was accompanied by and perhaps catalyseda change in pyroxene composition from metastable jadeite towardsomphacite by a reaction involving the resorption of garnet andthe nucleation and growth of paragonite. The resulting orthogneissconsists of quartz + omphadte + garnet + phengite + paragonite+ zoisite. The rock is characterized by a broad range of pyroxenecompositions (Jd0.8 –0.5) due to the incomplete equilibrationof this mineral to the bulk rock composition and a lack of Fe-Mgexchange equilibrium between pyroxene and garnet. However, incontrast to the undeformed metaquartz diorite, there are noobvious textural indications of disequilibrium between phasesin the orthogneiss  相似文献   

13.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

14.
The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase.In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in V p would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result.The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.  相似文献   

15.
榴辉岩中传统地质温压计新解:来自PT视剖面图的证据   总被引:1,自引:1,他引:0  
石榴石-单斜辉石(GC)温度计和石榴石-单斜辉石-多硅白云母(GCP)压力计是确定榴辉岩形成温压条件的最常用方法,二者主要依据石榴石、绿辉石和多硅白云母中相组分之间的交换和转换变质反应.依据MORB成分计算的PT视剖面图表明,在不同榴辉岩矿物组合中,控制3个矿物相成分变化的相组分之间的变质反应不同.在低温含绿泥石、滑石和蓝闪石榴辉岩组合中,石榴石和绿辉石的镁含量主要受到含水矿物脱水反应的控制,并都随温度升高而升高,二者之间的铁镁交换反应并不起主要作用.因此,在自然界含有蓝闪石等含水矿物的低温榴辉岩中,由于绿辉石相对富镁而常常导致GC温度计结果偏低.在含有硬柱石的高压-超高压榴辉岩中,石榴石中的钙含量受到硬柱石的控制,随着压力升高或温度降低,硬柱石含量增加,使石榴石中钙降低,此时石榴石-绿辉石-多硅白云母之间的转换反应对石榴石成分的影响会很微弱,由于石榴石相对贫钙而导致GCP压力计结果偏低.在含有蓝晶石的中温高压-超高压榴辉岩中,矿物成分的变化受到石榴石-绿辉石之间的铁镁交换反应和石榴石.绿辉石.多硅白云母-蓝晶石-石英/柯石英之间的一系列转换反应控制,因此,GC和GCP温压计都能给出相对合理的结果.在低压普通角闪石榴辉岩中,石榴石和绿辉石中的镁含量主要反应压力变化,有时并不指示变质作用温度.在含有蓝闪石等含水矿物的低温榴辉岩中,Thermocalc程序中的平均温压(avPT)方法可以给出比较合适的温度,但压力结果与GCP压力计一样也会偏低一些.在蓝闪石和绿帘石等含水矿物消失后的中温蓝晶石榴辉岩中,avPT方法难以给出合理的PT信息.相对来说,视剖面图方法能够给出最多的PT信息,是目前确定变质岩PT条件的最好方法.  相似文献   

16.
In central Rhodope of northern Greece, kyanite eclogites were discovered in the area of Thermes. They are strongly overprinted and exhibit a multi-stage development of minerals and mineral assemblages formed during successive stages of the exhumation. The initial high-pressure assemblage was garnet+omphacite+kyanite+zoisite+phengite+rutile+quartz. Corundum, Fe-Mg-spinel, sapphirine and högbomite occur as products of a first, high-temperature overprint, still at high pressures, whereas various symplectites [corundum-plagioclase (pl), spinel-pl, sapphirine-pl, clinopyroxene-pl, biotite-pl, amphibole-pl] grew during subsequent stages of the exhumation. Diablastic amphibole+plagioclase formed as end-products of the amphibolitization. According to geochemical data, the protoliths of the kyanite eclogites were basalts to basaltic andesites with “volcanic arc” affinities. For the high-pressure stage of metamorphism, minimum PT conditions were around 19 kbar, 700°C, while for the initial stages of the overprint, high-pressure granulite-facies conditions prevailed (T>800°C, at P>15 kbar). The PT conditions of the amphibolite facies were 8–11 kbar, 580–690°C. The kyanite eclogites of Thermes record the highest temperatures of metamorphism within the whole of Rhodope.  相似文献   

17.
Petrographical and mineral chemical data are given for the eclogites which occur in the garnet-kyanite micaschists of the Penninic Dora-Maira Massif between Brossasco, Isasca and Martiniana (Italian Western Alps) and for a sodic whiteschist associated with the pyrope-coesite whiteschists of Martiniana. The Brossasco-Isasca (BI) eclogites are fine grained, foliated and often mica-rich rocks with a strong preferred orientation of omphacite crystals and white micas. Porphyroblasts of hornblende are common in some varieties, whilst zoisite and kyanite occur occasionally in pale green varieties associated with leucocratic layers with quartz, jadeite and garnet. These features differentiate the BI eclogites from the eclogites that occur in other continental units of the Western Alps, which all belong to type C. Garnet, sodic pyroxene and glaucophane are the major minerals in the sodic whiteschist. Sodic pyroxene in the eclogites is an omphacite often close to Jd50Di50, with very little acmite and virtually no AlIV, and impure jadeite in the leucocratic layers and in the sodic whiteschist. Garnet is almandine with 20–30 mol. % for each of the pyrope and grossular components in the eclogites and a pyrope-rich variety in the sodic whiteschist. White mica is a variably substituted phengite, and paragonite apparently only occurs as a replacement product of kyanite. Amphibole is hornblende in the eclogites, but the most magnesian glaucophane yet described in the sodic whiteschist. Quartz pseudomorphs of coesite were found occasionally in a few pyroxenes and garnets. The P-T conditions during the VHP event are constrained in the eclogites by reactions which define a field ranging from 27–28 kbar to 35 kbar and from 680 to 750° C. These temperatures are consistent with the results of garnet-pyroxene and garnet-phengite geothermometry which suggest that the eclogites may have equilibrated at around 700° C. In the sodic whiteschist pressures ranging from 29 to 35 kbar can be deduced from the stability of the jadeite-pyrope garnet-glaucophane compatibility. As in the eclogites water activity must have been low. Such conditions are close to the P-T values estimated for the early Alpine recrystallization of the pyrope-coesite rock and, like petrographical and mineralogical features, set aside the BI eclogites from the other eclogites of the Western Alps, instead indicating a close similarity to some of the eclogite bodies occurring in the Adula nappe of the Central Alps. An important corollary is that glaucophane stability, at least in Na- and Mg-rich compositions and under very high pressures, may extend up to 700° C, in agreement with the HT stability limit suggested by experimental studies.  相似文献   

18.
Metabasites of the southern Ötztal basement hitherto mapped as amphibolites, were identified as eclogites. Primary mineral parageneses are tschermakitic to pargasitic green amphiboles, omphacite (Jd40), garnet II (Gr20–30) Py10), phengite (Si3.5), zoisite, rutile and quartz. Al—pargasite (20 wt% Al2O3) rims between garnet and omphacite are interpreted as retrograde reaction products.Retrogression of the eclogite parageneses reflecting decreasing pressure and increasing temperature conditions are: Symplectites of diopside and plagioclase after omphacite, Al-and Na-poor green amphiboles, grossularite-poor garnet III surrounding garnet II partly with atoll textures and symplectites of biotite and plagioclase replacing phengite. Continuation of retrogression with decreasing temperature conditions is indicated by actinolitic amphiboles and albite-rims between amphibole II and quartz.  相似文献   

19.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

20.
The discovery of eclogites is reported within the Great Himalayan Crystalline Complex in the Thongmön area, central Himalaya, and their metamorphic evolution is deciphered by petrographic studies, pseudosection modelling, and zircon dating. For the first time, omphacite has been found in the matrix of eclogites taken from a metamorphic mafic lens. Two groups of garnet have been identified in the Thongmön eclogites on the basis of major and rare earth elements and mineral inclusions. Core and intermediate sections of garnet represent Grt I, in which the major elements (Ca, Mg, and Fe) show a nearly homogenous distribution with little or weak zonation. This Grt I displays an almost flat chondrite‐normalized HREE pattern, and the main inclusions are amphibole, apatite, quartz, and abundant omphacite. Grt II, forms thin rims on large garnet grains, and is characterized by rim‐ward Ca decrease and Mg increase and MREE enrichment relative to HREE and LREE. No amphibole inclusions are found in Grt II, indicating the decomposition of amphibole contributed to its MREE enrichment. Two metamorphic stages, recorded by matrix minerals and inclusions in garnet and zircon, outline the burial of the Thongmön eclogites and progressive metamorphic processes to the pressure peak: (a) the assemblage of amphibole–garnet–omphacite–phengite–rutile–quartz, with the phengite interpreted as having been replaced by Bt+Pl symplectites, represents the prograde amphibole eclogite facies stage M1(1), (b) in the peak eclogite facies [stage M1(2)], amphibole was lost and melting started. Based on the compositions of garnet and omphacite inclusions, M1(1) is constrained to 19–20 kbar and 640–660°C and M1(2) occurred at >21 kbar, >750°C, with appearance of melt and its entrapment in metamorphic zircon. SHRIMP U–Pb dating of zircon from two eclogite samples yielded consistent metamorphic ages of 16.7 ± 0.6 Ma and 17.1 ± 0.4 Ma respectively. The metamorphic zircon grew concurrently with Grt II in the peak eclogite facies. Thongmön eclogites characterized by the prograde metamorphism from amphibolite facies to eclogite facies were formed by the continuing continental subduction of Indian plate beneath the Euro‐Asian continent in the Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号