首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We have developed an algorithm that allows crosshole georadar amplitude data contaminated with systematic errors to be tomographically inverted. The effects of the errors, which may due to variable antenna-borehole coupling, the groundwater table, and 3-D heterogeneities in the vicinity of one or more boreholes, are included in a series of transmitter and receiver amplitude-correction factors. Tests with synthetic georadar sections demonstrate that the new approach is capable of producing reliable attenuation information, even when large systematic errors are present in the amplitude data. Standard inversions of crosshole georadar data acquired within a highly complex alpine rock glacier yield distorted tomograms. In contrast the new approach results in geologically useful images.  相似文献   

2.
欧洋  高文利  李洋  王宇航 《地球物理学报》2019,62(10):3843-3853
为了避免使用不合理初始辐射场强和方向性因子带来的误差,研究了估计辐射参数的井间电磁波层析成像技术.通过时域有限差分法模拟表明,天线长度与波长的比值、钻孔充填情况、钻孔周围介质的物性均会影响偶极天线的初始辐射场强或方向性因子;为此结合已知的分层资料,将它们设为未知参数,并设定初始辐射场强与发射点位置相关,方向性因子随射线角度而变化;采用正则化反演方法,由钻孔资料建立了模型方差目标函数,使得反演结果与钻遇的地质特征保持一致.通过理论模型试验和实例应用分析表明,相对于传统射线层析成像方法,估计辐射参数的正则化层析成像技术有助于提高反演的准确性.  相似文献   

3.
In this paper, ray theoretical amplitudes and travel times are calculated in slightly perturbed velocity models using perturbation analysis. Also, test inversions using travel time and amplitude are computed. The pertubation method is tested using a 3-D velocity model for NORSAR having velocity variations up to 8.0 percent. The perturbed amplitudes are found to be in excellent agreement with the calculated ray amplitudes. Velocity inversions based on travel time and amplitude are next investigated. Perturbation analysis using linearized ray equations is efficiently used to compute amplitude derivatives with respect to model parameters. The trial linearized inversions use smaller velocity variations of 1.7 percent to avoid possible effects due to ray shift, even though the perturbation analysis is valid for larger variations. The trial 2-D inversion results show that linearized amplitude inversions are complementary and not redundant to travel time inversions, even in smoothly varying models.  相似文献   

4.
Tomography is the inversion of boundary projections to reconstruct the internal characteristics of the medium between the source and detector boreholes. Tomography is used to image the structure of geological formations and localized inhomogenieties. This imaging technique may be applied to either seismic or electromagnetic data, typically recorded as transmission measurements between two or more boreholes. Algebraic algorithms are error-driven solutions where the goal is to minimize the error between measured and predicted projections. The purpose of this study is to assess the effect of the ray propagation model, the measurement errors, and the error functions on the resolving ability of algebraic algorithms. The problem under consideration is the identification of a two-dimensional circular anomaly surveyed using crosshole measurements. The results show that: (1) convergence to the position of the circular anomaly in depth between vertical boreholes is significantly better than for convergence in the horizontal direction; (2) error surfaces may not be convex, even in the absence of measurement and model errors; (3) the distribution of information content significantly affects the convexity of averaging error functions; (4) measurement noise and model inaccuracy manifest in increased residuals and in reduced convergence gradients near optimum convergence; (5) the maximum ray error function increases convergence gradients compared with the average error function, and is unaffected by the distribution of information content; however, it has higher probability of local minima. Therefore, inversions based on the minimization of the maximum ray error may be advantageous in crosshole tomography but it requires smooth projections. These results are applicable to both electromagnetic and seismic data for wavelengths significantly smaller than the size of anomalies.  相似文献   

5.
Unstable rocky slopes are major hazards to the growing number of people that live and travel though mountainous regions. To construct effective barriers to falling rock, it is necessary to know the positions, dimensions and shapes of structures along which failure may occur. To investigate an unstable mountain slope distinguished by numerous open fracture zones, we have taken advantage of three moderately deep (51.0–120.8 m) boreholes to acquire geophysical logs and record single-hole radar, vertical radar profiling (VRP) and crosshole radar data. We observed spallation zones, displacements and borehole radar velocity and amplitude anomalies at 16 of the 46 discontinuities identified in the borehole optical televiewer images. The results of the VRP and crosshole experiments were disappointing at our study site; the source of only one VRP reflection was determined and the crosshole velocity and amplitude tomograms were remarkably featureless. In contrast, much useful structural information was provided by the single-hole radar experiments. Radar reflections were recorded from many surface and borehole fracture zones, demonstrating that the strong electrical property contrasts of these features extended some distance into the adjacent rock mass. The single-hole radar data suggested possible connections between 6 surface and 4 borehole fractures and led to the discovery of 5 additional near-surface fracture zones. Of particular importance, they supplied key details on the subsurface geometries and minimum subsurface lengths of 8 of the 10 previously known surface fracture zones and all of the newly discovered ones. The vast majority of surface fracture zones extended at least 40–60 m into the subsurface, demonstrating that their depth and surface dimensions are comparable.  相似文献   

6.
We discuss a strategy capable of a quantitative long-term monitoring of water saturation and volume variation of light non-aqueous phase liquids in the soil. The goal was reached monitoring a controlled sand cell contaminated with classical gasoline over 124 days, using geophysical methods such as electrical resistivity tomography, induced polarization and ground penetrating radar. We show that empirical relations, linking the water saturation to the physical parameters measured as resistivity from electrical resistivity tomography and travel time from georadar with advanced processing, are good tools for this purpose. The consistence of the proposed process is validated by both good overlap of results carried out from electrical resistivity tomography and georadar and theoretical models simulating the actual experiment.  相似文献   

7.
The development of crosshole seismic tomography as an imaging method for the subsurface has been hampered by the scarcity of real data. For boreholes in excess of a few hundred metres depth, crosshole seismic data acquisition is still a poorly developed and expensive technology. A partial solution to this relative lack of data has been achieved by the use of an ultrasonic seismic modelling system. Such ultrasonic data, obtained in the laboratory from physical models, provide a useful test of crosshole imaging software. In particular, ultrasonic data have been used to test the efficacy of a convolutional back-projection algorithm, designed for crosshole imaging. The algorithm is described and shown to be less susceptible to noise contamination than a Simultaneous Iterative Reconstruction Technique (SIRT) algorithm, and much more computationally efficient.  相似文献   

8.
高级  张海江 《地球物理学报》2016,59(11):4310-4322
在利用不同的地球物理勘探方法对地下复杂介质成像时,因观测系统的非完备性及数据本身对某些岩石物性的不敏感性,单独成像的结果存在较大的不确定性和不一致性.对于地震体波走时成像与直流电阻率成像,均面临着成像阴影区问题.对于地震走时成像,地震射线对低速区域覆盖较差形成阴影区,造成低速区域分辨率降低.对于电阻率成像,电场线在高阻区域分布较少,造成高阻区域分辨率较低.为了提高地下介质成像的精度,Gallado和Meju(2003)提出了基于交叉梯度结构约束的联合地球物理成像方法.在要求不同的物性模型拟合各自对应的数据同时,模型之间的结构要求一致,即交叉梯度趋于零.为了更有效地实现基于交叉梯度的结构约束,我们提出了一种新的交替结构约束的联合反演流程,即交替反演不同的数据而且在反演一种数据时要求对应的模型与另一个模型结构一致.新的算法能够更容易地把单独的反演系统耦合在一起,而且也更容易建立结构约束和数据拟合之间的平衡.基于新的联合反演流程,我们测试了基于交叉梯度结构约束的二维跨孔地震走时和直流电阻率联合成像.合成数据测试表明,我们提出的交替结构约束流程能够很好地实现基于交叉梯度结构约束的联合成像.与单独成像结果相比,地震走时和全通道电阻率联合成像更可靠地确定了速度和电阻率异常.  相似文献   

9.
Crosshole ground penetrating radar (GPR) tomography has been widely used and has the potential to improve the obtained subsurface models due to its high spatial resolution compared to other methods. Recent advances in full-waveform inversion of crosshole GPR data show that higher resolution images can be obtained compared to conventional ray-based GPR inversion because it can exploit all information present in the observed data. Since the first application of full-waveform inversion on synthetic and experimental GPR data, the algorithm has been significantly improved by extending the scalar to a vectorial approach, and changing the stepped permittivity and conductivity update into a simultaneous update. Here, we introduce new normalized gradients that do not depend on the number of sources and receivers which enable a comparison of the gradients and step lengths for different crosshole survey layouts. An experimental data set acquired at the Boise Hydrogeophysics Research Site is inverted using different source–receiver setups and the obtained permittivity and conductivity images, remaining gradients and final misfits are compared for the different versions of the full-waveform inversion. Moreover, different versions of the full-waveform inversion are applied to obtain an overview of all improvements. Most improvements result in a reducing final misfit between the measured and synthetic data and a reducing remaining gradient at the final iteration. Regions with relatively high remaining gradient amplitudes indicate less reliable inversion results. Comparison of the final full-waveform inversion results with Neutron–Neutron porosity log data and capacitive resistivity log data show considerably higher spatial frequencies for the logging data compared to the full-waveform inversion results. To enable a better comparison, we estimated a simple wavenumber filter and the full-waveform inversion results show an improved fit with the logging data. This work shows the potential of full-waveform inversion as an advanced method that can provide high resolution images to improve hydrological models.  相似文献   

10.
Cross-hole imaging method using Time Domain (TD) and Frequency Domain (FD) parts of cross-hole radar tomography data acquired using Step Frequency Ground Penetrating Radar (SFGPR) was implemented. This method was adopted for imaging foundation of a dam to check if the foundation was free of geological weak zones. The dam site is characterised by massive and jointed-phyllites associated with major and minor shears. The cross-hole radar tomography data was acquired in the frequency bandwidth of 250 MHz, from the deepest level gallery up to a depth of 40 m in the foundation. In TD, first arrival time and amplitudes of radio waves were inverted using Simultaneous Iterative Reconstruction Technique (SIRT) resulting in velocity and attenuation tomograms. The tomograms showed nearly uniform velocity or attenuation structure in the respective tomographic plane. Subsequently, cross-hole radar tomography data was analysed in FD for a variation of spectrum-amplitude at different frequencies. Amplitudes picked at each single frequency were then inverted using SIRT for obtaining frequency domain attenuation tomogram (FDAT). The FDAT clearly showed presence of anomalous high attenuation zones in the depth range of 23–33 m of the tomographic plane. The anomalous zones in the attenuation tomogram are weak zones in the foundation. To validate the above observations, cross-hole seismic tomography was also done in the same boreholes. Cross-hole seismic tomography results showed low velocity (p-wave) zones around the same location corresponding to the high attenuation zone in FDAT, bringing the dormant weak zone to light. This enabled fine-tuning of the reinforcement design and strengthening the weak zone. This paper discusses the cross-hole radar tomography imaging method, the results of its application in imaging weak zones in the foundation and the comparison of cross-hole radar tomography results (in TD and FD) with the cross-hole seismic tomography results.  相似文献   

11.
Radio‐frequency electromagnetic tomography (or radio imaging method) employs radio‐frequency (typically 0.1–10 MHz) electromagnetic wave propagation to delineate the distribution of electric properties between two boreholes. Currently, the straight‐ray imaging method is the primary imaging method for the radio imaging method data acquired for mineral exploration. We carried out synthetic studies using three‐dimensional finite‐element modelling implemented in COMSOL Multiphysics to study the electromagnetic field characteristics and to assess the capability of the straight‐ray imaging method using amplitude and phase data separately. We studied four sets of experiments with models of interest in the mining setting. In the first two experiments, we studied models with perfect conductors in homogeneous backgrounds, which show that the characteristics of the electromagnetic fields depend mainly on the wavelength. When the borehole separations are less than one wavelength, induction effects occur; conductors with simple geometries can be recovered acceptably with amplitude data but are incorrectly imaged on the phase tomogram. When the borehole separations are longer than two wavelengths, radiation effects play a major role. In this case, phase tomography provides images with acceptable quality, whereas amplitude tomography does not provide satisfactory results. The third experiment shows that imaging with both original and reciprocal datasets is somewhat helpful in improving the imaging quality by reducing the impact of noise. In the last experiment, we studied models with conductive zones extended into the borehole plane with different lengths, which were not accurately recovered with amplitude tomography. The experiment implies that it is difficult to determine the extent of a mineralised zone that has been intersected by one of the boreholes. Due to the large variation of the wavelength in the radio‐frequency range, we suggest investigating the local electric properties to select an operating frequency prior to a survey. We conclude that straight‐ray tomography with either amplitude or phase data cannot provide high‐quality imaging results. We suggest using more general methods based on full electromagnetic modelling to interpret the data. In circumstances when computational time is critical, we suggest saving time by using either induction methods for borehole separations less than one wavelength or wave‐based methods (only radiation fields are considered) for borehole separation larger than two wavelengths.  相似文献   

12.
跨孔雷达全波形反演成像方法的研究   总被引:5,自引:4,他引:1       下载免费PDF全文
跨孔雷达全波形反演是一种使用全波形信息反演两钻孔之间地下信息的层析成像技术.常规的层析成像反演大部分采用射线追踪方法,其中基于初至时的射线追踪方法可以反演出速度剖面(介电常数剖面),基于最大振幅的层析成像可以反演出衰减剖面(电导率剖面).常规射线追踪方法有许多不足,究其原因是该方法仅使用了小部分的信号信息.为了进一步提高成像分辨率,本文全面推导了全波形跨孔雷达层析成像反演方法,该方法利用雷达波全幅度相位信息能够反演出地下高分辨率的介电常数和电导率图像.本文通过基于局域网的分布式并行算法,有效地解决了巨量数据正演计算问题.文中首先建立了基于单轴各向异性介质完全匹配层的时间域有限差分二维正演算法,进而通过应用包括时间维度在内的全波场信息与残场逆向传播的全波场信息乘积来计算梯度方向,通过求取以步长为自变量的目标函数的极值确定步长公式,并提出以第一次介电常数反演作为同步反演的初始模型,能够有效提高收敛速度.本文对多组模型进行成像实验,取得了较好的反演效果.  相似文献   

13.
In this work we analyse the applicability of amplitude grid maps to the routine of geological surveys by means of GPR (ground penetrating radar). Although amplitude grid maps have been commonly used in archaeological surveys, their use in geological prospecting (including the detection of voids and determination of the internal geometry of sedimentary bodies) is not widespread. The direct analysis of GPR-profiles permits the analysis of geometrical features and other qualitative aspects that can be related to changes in EM properties. Aspects such as changes in the density of the banded disposition in radargrams, loss of reflector definition or higher scattering in particular zones of the profiles can give useful, though non-quantitative, information. The GPR wave-amplitude is a qualitative measurement of magnetic properties that can be processed as a semi-quantitative layout. The main differences observed in changing wave amplitude are related to the surveyed materials and their geometry. These changes produce variations in the relative wave amplitude or vertical wave-phase changes related to differences in the propagation velocity, the attenuation factor, the reflectivity and the geometry of the materials. Maps based on the lateral correlation between profiles (C-scans) or the lateral correlation of wave amplitudes along the same profile (as a tomography or Am-scans) permit the analysis of these changes. Variations in amplitude grid maps or Am-scans are related to (i) geometrical changes of surveyed materials, (ii) changes in the dielectric constant, and (iii) changes in the potential penetration depth (higher attenuation in particular zones of a profile) than can be correlated to the type, state or clay content of subsoil materials. Direct analysis of exposures helps to constrain interpretation using the geometrical features in radargrams resulting from the geological structure. In the same way, analysis of geometrical features in radargrams, together with time-slices of C-scans, can be used to determine the areal distribution of changes in the subsoil and approach the changes in EM properties. An example with parallel profiles and different devices, constrained by means a broadband multifrequency EM survey is shown.  相似文献   

14.
In seismic tomography the observed traveltimes or amplitudes of direct waves are inverted to obtain an estimate of seismic velocity or absorption of the section surveyed. There has been much recent interest in using cross-well traveltime tomography to observe the progress of fluids injected into the reservoir rocks during enhanced oil recovery (EOR) processes. If repeated surveys are carried out, then EOR processes may be monitored over a period of time. This paper describes the results of a simulated time-lapse tomography experiment to image the flood zone in an EOR process. Two physical models were made out of epoxy resins to simulate an essentially plane-layered sedimentary sequence containing a reservoir layer and simple geological structure. The models differed only in the reservoir layer, which was uniform in the ‘pre-flood’ model and contained a flood zone of known geometry in the ‘post-flood’ model. Data sets were acquired from each model using a cross-well survey geometry. Traveltime and amplitude tomographic imaging techniques have been applied to these data in an attempt to locate the extent of the flood zone. Traveltime tomography locates the flood zone quite accurately. Amplitude tomography shows the flood zone as a region of higher absorption, but does not image its boundaries as precisely. This is primarily because of multipathing and diffraction effects, which are not accounted for by the ray-based techniques for inverting seismic amplitudes. Nevertheless, absorption tomograms could complement velocity tomograms in real, heterogeneous reservoirs because absorption and velocity respond differently to changes in liquid/gas saturations for reservoir rocks.  相似文献   

15.
井间电磁成像系统应用研究   总被引:35,自引:8,他引:35       下载免费PDF全文
曾文冲  赵文杰  臧德福 《地球物理学报》2001,44(3):411-420,T002,T003
井间电磁(EM)成像系统的技术目标是实现井间电学特性的直接测量,并提供井间电阻率的二维及三维图像.从1997年开始,胜利油田与美国EMI公司合作,开展了EM技术的应用与研究,主要是通过大型、系统的现场试验,在大井间距的条件下,进一步验证仪器的性能,进行油藏研究的适用性和可行性分析;以系统的现场实测数据为依据,加快成像处理方法和软件的开发;开展穿透金属套管井的EM试验,探讨金属套管条件下的电阻率成像方法。两年来,利用EMI提供的XBH2000型测量系统,对胜利油田典型的低电阻率砂泥岩剖面,成功地进行了3对井、10个井次的试验。试验证明了仪器性能的可靠,取得了测量重复性好、系统完整的井间EM数据.并反演得到电阻率成像,在分析井间油气分布和油层开采动态方面,取得了良好的地质效果.  相似文献   

16.
On the retrieval of moment tensors from borehole data   总被引:5,自引:0,他引:5  
The complete moment tensors of seismic sources in homogeneous or vertically inhomogeneous isotropic structures cannot be retrieved using receivers deployed in one vertical borehole. The complete moment tensors can be retrieved from amplitudes of P‐waves, provided that receivers are deployed in at least three boreholes. Using amplitudes of P‐ and S‐waves, two boreholes are, in principle, sufficient. Similar rules also apply to transversely isotropic media with a vertical axis of symmetry. In the case of limited observations, the inversion can be stabilized by imposing the zero‐trace constraint on the moment tensors. However, this constraint is valid only if applied to observations of shear faulting on planar faults in isotropic media, which produces double‐couple mechanisms. For shear faulting on non‐planar faults, for tensile faulting, and for shear faulting in anisotropic media, the zero‐trace constraint is no longer valid and can distort the retrieved moment tensor and bias the fault‐plane solution. Numerical modelling simulating the inversion of the double‐couple mechanism from real data reveals that the errors in the double‐couple and non‐double‐couple percentages of the moment tensors rapidly decrease with increase in the number of boreholes used. For noisy P‐ and S‐wave amplitudes with noise of 15% of the top amplitude at each channel and for a velocity model biased by 10%, the errors in the double‐couple percentage attain 25, 13 and 6% when inverting for the double‐couple mechanism from one, two and three boreholes.  相似文献   

17.
Extracting accurate common image angle gathers from pre-stack depth migrations is important in the generation of any incremental uplift to the amplitude versus angle attributes and seismic inversions that can lead to significant impacts in exploration and development success. The commonly used Kirchhoff migration outputs surface common offset image gathers that require a transformation to angle gathers for amplitude versus angle analysis. The accuracy of this transformation is one of the factors that determine the robustness of the amplitude versus angle measurements. Here, we investigate the possibility of implementing an extended imaging condition, focusing on the space-lag condition, for generating subsurface reflection angle gathers within a Kirchhoff migration. The objective is to determine if exploiting the spatial local shift imaging condition can provide any increase in angle gather fidelity relative to the common offset image gathers. The same restrictions with a ray-based approach will apply using the extended imaging condition as both the offset and extended imaging condition method use travel times derived from solutions to an Eikonal equation. The aims are to offer an alternative ray-based method to generate subsurface angle gathers and to understand the impact on the amplitude versus angle response. To this end, the implementation of the space-shift imaging condition is discussed and results of three different data sets are presented. A layered three-dimensional model and a complex two-dimensional model are used to assess the space shift image gathers output from such a migration scheme and to evaluate the seismic attributes relative to the traditional surface offset common image gathers. The synthetic results show that the extended imaging condition clearly provides an uplift in the measured amplitude versus angle over the surface offset migration. The noise profile post-migration is also improved for the space-lag migration due to the double summation inside the migration. Finally, we show an example of a space-lag gather from deep marine data and compare the resultant angle gathers with those generated from an offset migration and a time-shift imaging condition Kirchhoff migration. The comparison of the real data with a well log shows that the space-lag result is a better match to the well compared to the time-lag extended imaging condition and the common offset Kirchhoff migration. Overall, the results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers with an incremental improvement in amplitude versus angle fidelity and lower noise but comes at a higher computational cost.  相似文献   

18.
温度变化对我国GPS台站垂直位移的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
地表温度变化可以引起GPS台站上安装GPS天线的地表水泥墩内部温度变化,还可以通过热传导的方式引起GPS台站基岩温度变化,从而引起GPS台站垂直位移变化.在中国区域,由GPS台站基岩温度变化引起GPS台站垂直位移变化的周年振幅最大可以达到1 mm;在长江以北地区,此周年振幅一般大于0.5 mm.在我国地壳运动观测网络中的23个GPS基准站中,温度变化对GPS台站垂直位移总影响的周年振幅最大值为2.8 mm,其中13个GPS基准站垂直位移的周年振幅变化大于1 mm.因此,温度变化是引起GPS台站垂直位移周年变化的一个不可忽视因素.  相似文献   

19.
Results are presented of a series of cross-hole acoustic measurements made between four horizontal boreholes drilled from a near-surface underground opening situated in a basaltic rock mass. The objectives of the program were to assess the extent of blast damage around the opening, and to evaluate the rock mass characteristics and their spatial variation around the opening. The acoustic velocity and attenuation data are indicative of an anisotropic, jointed rock mass, with a greater intensity of jointing along travel paths in the horizontal than the vertical direction. Low acoustic P- and S-velocities are indicative of blast damage and of zones of intense jointing or fracturing. In this case blast damage extends to approximately 1.5 m from the face. Attenuation data appear to be less sensitive in distinguishing between the blast-damaged zone and intense vertical jointing and fracturing in the virgin rock mass. Taken together with field data, laboratory measurements of P- and S-wave velocities on intact core samples suggest that the rock mass is probably water saturated.  相似文献   

20.
Dipole antennas for ground-penetrating radar (GPR) radiate and receive electromagnetic waves with a strong directional dependence. Thus, experiments to measure in situ antenna radiation as functions of direction and polarization are of practical interest. Three field experiments were performed. One experiment was over a layered fluvial/eolian sequence; the other two used controlled targets (buried pipes and a metal ball). The radiation patterns were sampled by incrementally varying the antenna orientations and separations while recording reflections from the known targets. The results show qualitative, but systematic, correspondence with approximate theoretical far-field radiation patterns. Slow variations of amplitude with antenna azimuth and dip indicate that antenna orientations within 20° in the standard TE and TM acquisition geometries are adequate for most field applications, but not if detailed amplitude analysis is to be performed. Variations in antenna orientation or height (particularly for heights less than one-quarter wavelength) above the free surface introduce corresponding biases or uncertainties into recorded amplitudes. The variance within any suite of measurements is, in part, a consequence of differences in ground impedance at each antenna location. The theoretically predicted sensitivity to antenna height is mediated by surface roughness at high frequencies. It is necessary to include, or compensate for, the antenna radiation pattern in analysis of field data amplitudes, in experiment design, and in selecting appropriate antennas for specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号