首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Earth's mantle contains a mixture of primordial noble gases, in particular solar-type helium and neon, and radiogenic rare gases from long-lived U, 232Th, 40K and short-lived 129I, 244Pu. Rocks derived from deep mantle plume magmatism like on Hawaii or Iceland contain a higher proportion of primordial nuclides than rocks from the shallow upper mantle, e.g. mid ocean ridge basalts (MORBs). This is widely regarded as the key evidence for survival of a less degassed and more “primitive” reservoir within the lower mantle. We present an evaluation of noble gas composition showing the shallow mantle to have about five times more radiogenic (relative to primordial) isotopes than Hawaii/Iceland-type plume reservoirs, no matter if short- or long-lived decay systems are considered. This fundamental property suggests that both MORB and plume-type noble gases are mixtures of: (1) a homogeneous radiogenic component present throughout most of the mantle and (2) a uniform primordial noble gas component with very minor radiogenic ingrowth. This conclusion depends crucially on the observed excess of radiogenic Xe in plume-derived rocks, and is only valid if this Xe excess is inherent to the plume sources.Possible sources of the primordial component of mantle plume reservoirs—and possibly also the MORB mantle—could be mantle reservoirs that remained relatively isolated over most of Earth's history (“blobs”, a deep abyssal layer, or the D” layer), but these need a considerable concentration of primordial gases to compensate U, Th, K decay over 4.5 Ga. Earth's core is evaluated as an alternative viable source feeding primordial nuclides into mantle reservoirs: even low metal-silicate partitioning coefficients allow sufficient primordial noble gases to be incorporated into the early forming core, as the undifferentiated proto-Earth was initially gas-rich. Massive mantle degassing soon after core formation then provides the opposite concentration gradient that allows primordial noble gases reentering the mantle at the core-mantle boundary, probably via partial mantle melts. Another possible source of primordial noble gases in Earth's mantle are subducted sediments containing extraterrestrial dust with solar He and Ne, but this supply mechanism crucially depends on largely unconstrained parameters. The latter two scenarios do not require the preservation of a “primitive” mantle reservoir over 4.5 Ga, and can potentially better reconcile increasing geochemical evidence of recycled lithospheric components in mantle plumes and seismic evidence for whole mantle convection.  相似文献   

2.
Recognition that the cooling of the core is accomplished by conduction of heat into a thermal boundary layer (D″) at the base of the mantle, partly decouples calculations of the thermal histories of the core and mantle. Both are controlled by the temperature-dependent rheology of the mantle, but in different ways. Thermal parameters of the Earth are more tightly constrained than hitherto by demanding that they satisfy both core and mantle histories. We require evolution from an early state, in which the temperatures of the top of the core and the base of the mantle were both very close to the mantle solidus, to the present state in which a temperature increment, estimated to be ~ 800 K, has developed across D″. The thermal history is not very dependent upon the assumption of Newtonian or non-Newtonian mantle rheology. The thermal boundary layer at the base of the mantle (i.e., D″) developed within the first few hundred million years and the temperature increment across it is still increasing slowly. In our preferred model the present temperature at the top of the core is 3800 K and the mantle temperature, extrapolated to the core boundary without the thermal boundary layer, is 3000 K. The mantle solidus is 3860 K. These temperatures could be varied within quite wide limits without seriously affecting our conclusions. Core gravitational energy release is found to have been remarkably constant at ~ 3 × 1011 W. nearly 20% of the core heat flux, for the past 3 × 109 y, although the total terrestrial heat flux has decreased by a factor of 2 or 3 in that time. This gravitational energy can power the “chemical” dynamo in spite of a core heat flux that is less than that required by conduction down an adiabatic gradient in the outer core; part of the gravitational energy is used to redistribute the excess heat back into the core, leaving 1.8 × 1011 W to drive the dynamo. At no time was the dynamo thermally driven and the present radioactive heating in the core is negligibly small. The dynamo can persist indefinitely into the future; available power 1010 y from now is estimated to be 0.3 × 1011 W if linear mantle rheology is assumed or more if mantle rheology is non-linear. The assumption that the gravitational constant decreases with time imposes an implausible rate of decrease in dynamo energy. With conventional thermodynamics it also requires radiogenic heating of the mantle considerably in excess of the likely content of radioactive elements.  相似文献   

3.
UppermantleflowbeneaththeNorthwestofChinaanditslithosphericdynamicsJIAN-HUAHUANGI(黄建华);XIA-HUACHANGI(常筱华)andRONG-SHANFUI傅容珊)(...  相似文献   

4.
本文分别在直角坐标系和柱坐标系下,研究瑞利数从104逐渐增大到107对热对流的影响,数值计算结果表明:瑞利数越大,地幔柱越窄,地幔柱上升速度也越快;源自上地幔的地幔柱半径的范围为9到210 km.根据峨眉山内带的半径推算出地幔的黏性系数约为3.8×1021Pa·s,地幔柱平均流动速度为2.5 cm/a.  相似文献   

5.
Using secondary spinel standard method, we have measured precisely the compositions of spinels of amphibole-bearing mantle peridotite xenoliths from Nüshan in eastern China, and calculated the mantle oxygen fugacities recorded by the xenoliths. Results indicate that the mantle metasomatism for forming amphiboles in Nüshan region of Anhui has resulted in the decrease of mantle redox, which is in contrast with theoretical estimation and previous research results from other areas around the world. Combining with related studies on the mantle of eastern China, we give a reasonable explanation to the ‘new finding’ and further elucidate the compositions and nature of mantle fluids in eastern China.  相似文献   

6.
华南上地幔P波速度结构   总被引:1,自引:1,他引:1       下载免费PDF全文
通过拟合15°-30°内的长周期P波走时及波形资料,得到了华南地区上地幔P波速度结构模型SC.研究结果表明,在华南地区的上地幔内无低速层存在,在405km和660km深度处仃一级间断面存在,速度跳跃分别为5.7%和4.6%.通过与欧洲西部上地幔模型K8,欧洲西北部上地幔模型S8和西藏地区上地幔模型QX8比较,我们发现各个构造区P波速度的过渡区是一致,但间断面的绝对深度不一样.  相似文献   

7.
伊通地堑上地幔剪切带   总被引:3,自引:1,他引:3  
通过研究糜棱岩型幔源包体的变形显微构造、位错亚构造及组构特征,确定它是上地幔剪切带的代表物质。该带形成温度为729~828℃、压力为1.10~1.38GPa、差异应力为97~150MPa、应变速率为IO ̄(-14)~1O ̄(-12)s ̄(-1)、等效粘滞度为10~1000EPa·s和深度为37~45km。这是一种与地幔底辟作用有关的规模较小的缓倾斜剪切带,也是应变集中带,能导致上地幔地震波速各向异性,并与地震活动有关  相似文献   

8.
Partial melting of mantle peridotite generates a physically and chemically layered oceanic lithosphere that is cycled back into the mantle in subduction zones. Stirring times of the mantle are too long to allow for complete re-homogenization of subducted basalt and harzburgite, given the low chemical diffusivity of the solid mantle. This suggests that the Earth's mantle is a mechanical mixture of basaltic and harzburgitic components. Using a recently developed thermodynamic formulism we determine the phase equilibria and the seismic properties of a mantle comprised of a mechanical mixture of basalt and harzburgite (MM) and a homogeneous mantle (EA) with identical pyrolitic bulk chemistry. We use the theoretical shear velocity profiles as a new thermometer of the mantle below the magma-genetic zone by modeling the difference ΔT410-660 between traveltimes of shear wave reflections off the 410-km and 660-km with the potential temperature TP. ΔT410-660 are measured from waveform stacks. They indicate that, over 1000+ km wave lengths, the temperature varies by about 200 K. Lowest and highest temperatures are resolved for the western Pacific subduction zones and the central Pacific, respectively. This variation is similar for the EA and MM and is in excellent agreement with estimates of transition zone thickness and shear velocity variations. The median value of TP for the EA is 1720 K. It is about 1625 K for the MM, a value that is in better agreement with the Normal-MORB values of 1610 ± 40 K inferred from olivine-liquid equilibria given that our sampling region encompasses the Western Pacific subduction zones and the oldest parts of the Pacific Plate. We argue therefore that a mechanical mixed mantle, with generally higher velocities and steeper velocities gradients, represents a better physical reference model than a model based on a fully equilibrated assemblage.  相似文献   

9.
The strong control that the endothermic phase change from spinel to perovskite and magnesiowüstite at a depth of 660 km has on mantle convection is discussed. The phase transition determines the morphology and length scales of upflow and downflow structures and, through retardation of sinking slabs, can cause an avalanche phenomenon involving rapid flushing of cold upper mantle material down to the base of the lower mantle. The phase change significantly heats plumes that rise from the lower mantle and penetrate into the upper mantle. The exothermic phase change from olivine to spinel at a depth of 400 km in the mantle mitigates the effects of the dynamically and thermally dominant endothermic phase transition.  相似文献   

10.
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.  相似文献   

11.
Assuming a radially stratified Newtonian mantle in a steady-state approximation, we demonstrate that the permeability of a viscosity interface at 660-km depth strongly depends on the wavelength of buoyancy forces driving the flow. The flow induced by long-wavelength loads penetrates through the boundary freely even if the viscosity increases by two orders. In contrast, the boundary is practically impermeable for short-wavelength loads located in the upper mantle. Thus, a stepwise increase of viscosity is a significant obstacle for small descending features in the upper mantle, but huge upper mantle downwellings, or upwellings formed in the-lower mantle can overcome it easily. This indicates that certain care is necessary in interpreting the seismic structure of the mantle by means of flow models. The global tomographic image includes only the first few degrees of the harmonic series and, consequently, its interpretation in terms of a present-day flow field results in a predominantly whole-mantle circulation even for extreme viscosity contrasts.  相似文献   

12.
The ∼0.2 mm/yr uplift of Hawaiian islands Lanai and Molokai and Hawaiian swell topography pose important constraints on the structure and dynamics of mantle plumes. We have formulated 3-D models of mantle convection to investigate the effects of plume-plate interactions on surface vertical motions and swell topography. In our models, the controlling parameters are plume radius, excess plume temperature, and upper mantle viscosity. We have found that swell height and swell width constraints limit the radius of the Hawaiian plume to be smaller than 70 km. The additional constraint from the uplift at Lanai requires excess plume temperature to be greater than 400 K. If excess plume temperature is 400 K, models with plume radius between 50 and 70 km and upper mantle viscosity between 1020 and 3×1020 Pa s satisfy all the constraints. Our results indicate that mantle plume in the upper mantle may be significantly hotter than previously suggested. This has important implications for mantle convection and mantle melting. In addition to constraining plume dynamics, our models also provide a mechanism to produce the observed uplift at Lanai and Molokai that has never been satisfactorily explained before.  相似文献   

13.
The two principal contributions to the surface heat flow of the earth are the cooling of the earth and the heat production of radioactive isotopes. As the rate of heat production decreases with time the temperature of the interior of the earth also decreases. The rate of decrease is determined by the ability of solid-state mantle convection to transport the heat to the surface. The dominant effect is the exponential temperature dependence of the mantle viscosity. The non-dimensional mantle temperature can be parameterised in terms of the Rayleigh number for mantle convection. It is found that the mantle is currently cooling at a rate of 36°K/109 years and that three billion years ago the mean temperature was 150°K higher than it is today; 83% of the present surface heat flow is attributed to the decay of radioactive isotopes and 17% to the cooling of the earth. The corresponding mean concentration of uranium in the mantle is 32 ppb.  相似文献   

14.
Global P-wave tomography: On the effect of various mantle and core phases   总被引:4,自引:0,他引:4  
In this work, many global tomographic inversions and resolution tests are carried out to investigate the influence of various mantle and core phase data from the International Seismological Center (ISC) data set on the determination of 3D velocity structure of the Earth's interior. Our results show that, when only the direct P data are used, the resolution is good for most of the mantle except for the oceanic regions down to about 1000 km depth and for most of the D″ layer, and PP rays can provide a better constraint on the structure down to the middle mantle, in particular for the upper mantle under the oceans. PcP can enhance the ray sampling of the middle and lower mantle around the Pacific rim and Europe, while Pdiff can help improve the spatial resolution in the lowermost mantle. The outer core phases (PKP, PKiKP and PKKP) can improve the resolution in the lowermost mantle of the southern hemisphere and under oceanic regions. When finer blocks or grid nodes are adopted to determine a high-resolution model, pP data are very useful for improving the upper mantle structure. The resulting model inferred from all phases not only displays the general features contained in the previous global tomographic models, but also reveals some new features. For example, the image of the Hawaiian mantle plume is improved notably over the previous studies. It is imaged as a continuous low velocity anomaly beneath the Hawaiian hotspot from the core-mantle boundary (CMB) to the surface, implying that the Hawaiian mantle plume indeed originates from the CMB. Low-velocity anomalies along some mid-oceanic ridges extend down to about 600 km depth. Our results suggested that later seismic phases are of great importance in better understanding the structure and dynamics of the Earth's interior.  相似文献   

15.
I present the results of statistical hypothesis testing of Grand’s (2002) global tomography model of three-dimensional shear velocity variations for the middle mantle underneath eastern and southern Africa. I apply an F test to evaluate the validity of a model where a tilted, slow-velocity anomaly in the deepest mantle under southern Africa, known as the African superplume, is continuous with a slow-velocity anomaly in the upper mantle under eastern Africa. This null hypothesis is tested against alternative hypotheses, in which various “obstruction volumes” in the middle mantle are constrained to zero perturbation from the one-dimensional reference velocity during the tomographic inversion. I find that there is an equal probability of accepting an alternative hypothesis with a thin “obstruction volume” at 850–1,000 km depth, whereas volumes at other depths are rejected. But the alternative hypothesis, where a connection is forced at 850–1,000 km depth, is rejected. I conclude that the African superplume rises to at least 1,150 km depth, and that the upper mantle slow-velocity anomaly continues from the surface to below the mantle transition zone. I interpret the “obstruction volume” as a weakening of the superplume in the middle mantle.  相似文献   

16.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

17.
A statistical examination of isotopic distributions for MORB from various ocean ridges leads to the “blob cluster model”, in which the oceanic crust accreting at ridges results from the mixing of two components within the ascending mantle. These are (1) upper mantle material and (2) discrete rising blobs of more radiogenic material. The blobs are fractionated to a variable degree and are distributed in the upper mantle circulation in a manner that is related to the spreading rate.(1) Themean values of the isotopic distributions allow us to calculate the probabilities of the two types of material within the mantle. The results show that theproportion of asthenospheric material in the mixtureincreases with the spreading rate, in agreement with the hypothesis of blob dilution within the upper mantle convection.Mass fluxes can be estimated for the rising blobs from these probabilities, which depend on the respective concentrations in the sources of the two types of material. If the blobs originate in the lower mantle, this flux estimation would suggest that a significant part of the lower mantle has been injected into the upper mantle during earth history.(2) Thestandard deviations of the distributions depend on the “efficiency” of the mixing process:the more imbricated are the asthenospheric and blob materials in the mixture,the smaller is theisotopic spread. This efficiency parameter is shown to increase with the spreading rate, as already suggested by previous comparisons between the East Pacific Rise and the Mid-Atlantic Ridge. Moreover, this feature may also be correlated with other data such as ridge bathymetric variations.  相似文献   

18.
We compute the transfer of oceanic lithosphere material from the surface of the model to the inner convective mantle at successive stages of the supercontinental cycle, in the time interval from the beginning of convergence of the continents to their complete dispersal. The sequence of stages of a supercontinental cycle (Wilson cycle) is calculated with a two-dimensional numerical model of assembling and dispersing continents driven by mantle flows; in turn, the flows themselves are forming under thermal and mechanical influence of continents. We obtain that during the time of the order of 300 Myr the complete stirring of oceanic lithosphere through whole mantle does not occur. This agrees with current ideas on the circulation of oceanic crust material. Former oceanic crust material appears again at the Earth’s surface in the areas of mantle upstreams. The numerical simulation demonstrates that the supercontinental cycle is a factor which intensifies stirring of the material, especially in the region beneath the supercontinent. The reasons are a recurring formation of plumes in that region as well as a global restructuring of mantle flow pattern due to the process of joining and separation of continents. The computations of viscous shear stresses are also carried out in the mantle as a function of spatial coordinates and time. With a simplified model of uniform mantle viscosity, the numerical experiment shows that the typical maximal shear stresses in the major portion of the mantle measure about 5 MPa (50 bar). The typical maximal shear stresses located in the uppermost part of mantle downgoing streams (in a zone that measures roughly 200 × 200 km) are approximately 8 times greater and equal to 40 MPa (400 bar).  相似文献   

19.
Abstract Isotopic compositions of He, Ne and Ar were measured on Plio–Quaternary alkaline basalts of Marib–Sirwah and Shuqra volcanic fields in Yemen, south-western Arabian Peninsula. Very high 3He/4He isotope ratios were found in olivine phenocrysts of some Quaternary alkaline basalts in both volcanic fields, located on the margin of the dispersed Afar mantle plume, compared with the Afar–Ethiopian province in the center of the mantle plume. This suggests that the Afar mantle plume source may consist of common component (C or focal zone (FOZO)) with variable primordial 3He/4He ratio rather than high μ mantle (HIMU) component. The three component mixing C as the Afar mantle plume, depleted mantle (DM) as upper mantle and lithospheric mantle with a hybrid enriched mantle I–II (EM I–EM II) characteristics may be adequate to explain He–Sr–Nd–Pb isotope variation for the Afar–Arabian Cenozoic volcanics. The occurrence of high 3He/4He ratios in the Marib–Sirwah volcanic field appears to show that the primitive basaltic magma, derived from the margin of the dispersed trous-like Afar mantle plume during 15–0 Ma, was not by contamination of lithospheric and upper mantle materials in comparison with that from the center of the Afar mantle plume as a result of relatively low thermal anomaly.  相似文献   

20.
Fractional crystallization behaviour of a magma ocean extending to lower mantle depths was deduced from estimations of melting relations for the deep mantle and the density relationships between ultrabasic liquid and mantle minerals. The accretional growth of the Earth necessarily involves a molten zone (magma ocean) in the outer layer of the growing Earth. The fractionation by melting during accretion results in primary stratification composed of a molten ultrabasic upper mantle (magma ocean), a perovskite-rich lower mantle, and an iron core. A certain amount of Al2O3 and CaO was removed from the magma ocean and retained in the lower mantle due to eclogite fractionation in the early stage of accretion and the perovskite fractionation in the later stage of accretion. Models of the stratification of the upper mantle arising from fractional crystallization of the magma ocean and subsequent convective disturbance were deduced on the basis of estimations of melting relations for the deep mantle and the density relationships between the ultrabasic liquid and mantle minerals. The stratification of the mantle, which is consistent with geophysical constraints is as follows; the upper mantle is composed of two layers, the upper olivine-rich layer and the lower garnet-rich layer with a thickness around 200 km, and the lower mantle with a perovskite-rich composition. In this model, both the 400 and 650 km discontinuities are the chemical boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号