首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visual interpretation of IRS-1A LISS-II (October 1988 & Feb. 1989) FCC (spectral bands 2, 3 & 4) at 1:50,000 scale was carried out for soil resource mapping of Bhiwani district (Haryana State) covering on area of 5099 sq. kim. Based on image characteristics, element analysis (landform, vegetation & erosion) and field traverses, physiography-soil relationship was established. Major physiographic units identified in the area are: Aeolian plain, Fluvio-acolian plain, Transitional plain, Alluvial plain, Hills and Pediments. Area was divided into 34 subunits. Final physiography-soil map on 1:50,000 scale was prepared. Taxonomically, the soils of each unit were classified and are found as: In aeolian plain—Typic Torripsamments/coarse loamy, Typic Camborthios; Fluvio-aeolian plain-Aridic Ustipsamments/coarse loamy/fine loamy Typic/Udic Ustochrepts; Alluvial plain—Typic Ustipsamments/coarse loamy/fine loamy Typic/Udic Ustochrepts; Hills and Pediments—fregmental Lithic Torriorthents/Typic Torripsamments. Interpretation for each subunit was made regarding land suitability for various land utilisation types. It was found that hills and pediments, dunal ridges, dunal complexes and serub-lands are best suitable for forestry and horiculture plantations. Dunal plains and inter-dunal depressions are best suitable for gram/bajra/oilseeds/guar, very gently sloping dunal plain and low lying plain are suitable for wheat/arhar/cotton/sunflower.  相似文献   

2.
In the present study, an attempt has been made to analyse IRS-ID LISS-III satellite data in conjunction with field observations for geomorphological mapping and pedo-geomorphological characterisation in Mohgaon area of Nagpur district, Maharashtra. Analysis of satellite data reveals distint geomorphological units viz., plateau top, isolated mounds, linear ridges, escarpments, plateau spurs, subdued plateau, rolling plains, pediments, narrow valleys and main valley floor. Soil profiles, studied on different identified landforms, showed variation in site and morphological charactaristics. Moderate soil erosion occurs on plateau top, isolated mouds, plateau spurs, rollinmg plains and pediments. Severe erosion was identified on escarpments and subdued plateau and narrow valleys suffer very slight erosional hazards. Moderately well drained soils were found on rolling plains, pediments, narrow valleys and main valley floor. Well drained soils were noticed on plateau top and plateau spurs. Very shallow soils were found on the plateau top and isolated mounds. Shallow soils are found in linear ridges, escarpments, plateau spurs and rolling plains. Moderately deep and deep soils are found on subdued plateau, pediments and main valley floor. The landform-soil relatioinship reveals that the soils on the plateau top and isolated mounds are very shallow, well drained, clay textured. The soils on the narrow valleys and main valley floor are deep, moderatly well drained, and clayey in texture. It also indicates that landform-soil processes are governed by physiographic position, drainage, slope and erosion conditions of the area. The present study reveals that the analysis of remotely sensed data in conjunction with field observations in GIS will be of immense help in geomorphology mapping, analysis of landform-soil relationships and generation of their geo-spatial database.  相似文献   

3.
This study was undertaken to prepare an inventory on soil erosion of a hilly river watershed — the Aglar watershed, part of Tehri Garhwal and Dehradun districts (U.P.), using terrain physiography and soil survey data obtained from interpretation and analysis of Landsat TM FCC (1:62,500 scale) and limited ground investigations. The watershed is divided into four broad physiographic units viz. higher Himalayas (> 2000m elevation); lower Himalayas (< 2000m elevation); river terraces and flood plains. Each physiographic unit has been further divided into subunits on the basis of aspects and landuse. Three major orders of soils viz. Inceptisols, Mollisols and Entisols were found in different physiographic units. Soil, and land properties of soilscape units viz. soil depth, texture, structure, slope, landuse and soil temperature regime were evaluated for soil-erosion hazard. The results indicate that in the whole watershed 19.13%, 45.68%, 26.51% and 7.92% areas have been found to be under none to slight, moderate, severe and very severe soil erosion hazard categories, respectively.  相似文献   

4.
Lateritic soils of Mathamangalam, Kannur District, located in midlands of Kerala, were morphologically studied, characterized, classified and mapped at 1:50,000 scale using remote sensing techniques. The terrain of the study area being hilly and covered with perennial vegetation, soil-landscape model was applied. For this purpose physiographic information was inferred from SRTM DEM, Resourcesat-1 LISS-III satellite image and topographical maps. The interpreted units were validated in the field and characterized through soil-site examination, soil profile study and soil analysis. The study indicated that the lateritic soils of midlands of Kerala vary in physical, chemical and morphological properties in relation to micro-relief. Soils developed on moderately steeply sloping side slopes (15–30% slope) are deep, moderately well drained with gravelly clay textured, where as the soils developed on moderately slopping side slope (10–15% slope) are very deep and well drained. The soils of valleys are very deep, moderately well drained with fine texture. Very gently sloping (1–3%) laterite plateau tops have extremely shallow soils associated with rock outcrops. These soils mainly belong to Order Ultisols followed by Inceptisols and Entisols. These were further grouped up to Family and Series level by tentatively establishing seven soil series. This study helps in understanding the behaviour of lateritic soils of midlands of Kerala, which can be useful in generation of interpretative maps and in optimizing the land use.  相似文献   

5.
In the present study, landforms and soils have been characterized in Borgaon Manju watershed of basaltic terrain located in Akola district, Maharashtra, Central India. Terrain characterization using Shuttle Radar Topography Mission (SRTM) elevation data (90 m) and IRS-P6 LISS IV data in conjunction with adequate field surveys shows nine distinct landforms. Soil resource inventory shows fourteen soil series in the study area. Soils formed on gently sloping (3–8 %) subdued plateau are very shallow (23 cm), moderately well drained, moderate (15–40 %) surface stoniness, severely eroded, clayey and slightly alkaline in reaction, whereas, the soils formed on level to nearly level (0–1 %) slope in the main valley are very deep (>150 cm), well drained, very slight (<3 %) surface stoniness, moderately eroded with clayey surface and moderately alkaline in reaction. Soils in the watershed are grouped into Lithic Ustorthents, Vertic Haplustepts, Calcic Haplustepts, Typic Haplustepts, Typic Haplusterts and Sodic Calciusterts. The study demonstrates that the analysis of SRTM elevation data and IRS P6–IV data in Geographic Information System (GIS) with adequate field surveys helps in characterization of landforms and soils in analysis of landscape-soil relationship.  相似文献   

6.
Remote sensing techniques have been employed to identify and delineate soils in a part of Dibrugarh district of Assam. Landsat-4 MSS data in the form of FCC (4, 5, 7) were interpreted visually for physiographic analysis in conjunction with Survey of India topographic maps. Ground data were translated in terms of soils using composite interpretation map as base. The abstraction level attained was Families of Soil Taxonomy. Four major physiographic units were delineated, viz. active flood plain, recent alluvial plain, gently undulating old alluvial plain and gently sloping to undulating piedmont plain. Dominant soils identified are: coarse loamy Aeric Fluvaquents and fine loamy Typic Udifluvents in active flood plain; fine Typic Haplaquepts and fine loamy Aquic Dystrochrepts in recent alluvial plain; fine loamy Umbric Dystrochrepts and fine Ultic Hapludalfs in old alluvial plain; coarse loamy Typic Udorthents and fine Mollic Hapludalfs in piedmont plain.  相似文献   

7.
GIS based land resource inventory (LRI) with fine resolution imagery is considered as most authentic tool for soil resource mapping. Soil resource mapping using the concept of soil series in a smaller scale limits its wide application and also its impact assessment for crop suitability is controversial. In this study, we attempted to develop LRI at large scale (1:10,000 scale) at block level land use planning (LUP) in Dandakaranya and Easternghats physiographic confluence of India. The concept of land management unit was introduced in this endeavour. The impact assessment of LRI based LUP was exercised to develop efficient crop planning with best possible management practices. The study area comprised six landforms with slope gradient ranging from very gentle (1–3%) to steep slopes (15–25%). The very gently sloping young alluvial plains occupied maximum areas (19.95% of TGA). The single cropped (paddy) land appears to dominate the land use systems (40.0% of TGA). Thirty three landscape ecological units were resulted by GIS-overlay. Eighteen soils mapping units were generated. The area was broadly under two soil orders (Inceptisols and Alfisols); three great group (Haplaquepts, Rhodustalfs and Endoaquepts) and ten soil series. Crop suitability based impact assessment of LRI based LUP revealed that average yield of different crops increased by 39.2 and 14.5% in Kharif (rainy season) and Rabi (winter) seasons respectively and annual net returns by 83.4% for the cropping system, compared to traditional practices. Productivity and net returns can be increased several folds if customized recommended practices are adopted by the farmers. Informations generated from the study emphasized the potentiality of LRI towards optimizing LUP and exhibited an ample scope to use the methodology as a tool to assess in other physiographic regions in India and abroad.  相似文献   

8.
Landsat RBV imagery on 1:500,000 was interpreted to prepare small scale physiography map of the part of the Tons basin. Aerial photographs on 1:60,000 to 1:80,000 scale were interpreted to prepare medium scale physiography map of the basin. The basin has been sub-divided into three physiographic regions viz. High to very high mountains constituting of glaciated and temperate high mountains; Low to moderately high mountains and very low maountains. The physiographic regions have been further sub-divided based on landforms, slope and dissection index. The major physiographic units are summits, repose slopes, serrated ridges with horn/arates; mountain and valley glaciers, morains, solufluction terraces, intrenched incised river valleys, engrown valleys, alluvial terraces, rocky slopes/cliffs and debris.  相似文献   

9.
In this study digital image processing for physiographic analysis and soil resource mapping of Solani watershed was carried out using satellite remote sensing data and GIS. Digital image processing of satellite data facilitated in accurately delineating and identifying various soil mapping units. The physiography of the study area is mainly influenced by denudational and colluvial processes in the upper part and by sedimentation processes in the lower part. Topography of the land and nature of parent material along with the time factor seemed to have played a vital role in the genesis of soils. Majority of the mapping units are Typic Haplustepts with Entisols and Inceptisols being the major soil orders. The soils of the Siwalik hills experiences severe erosion, which prevents the maturation of soil profile. The present study demonstrated that satellite remote sensing and GIS is a valuable tool for physiographic analysis and soil resource mapping.  相似文献   

10.
Visual Interpretation of Landsat Imagery (TM-FCC) on 1∶250,000 scale covering 2410 sq km in a part of Mahandi Delta, Kataka district, Orissa was carried out for delineating the physiographic units. The major physiographic units identified and delineated were ‘Delta plain’ and ‘Coastal plain’. These units were further subdivided on the basis of image elements. The abstraction level attained was ‘Family’ based on Soil Taxonomy. The soils of the beach were classified as Typic Ustipsamments; old coastal plain as fine, Typic Haplaquept and coarse loamy Aquic Ustifluvent; Tidal flat as fine Typic Haplaquept and fine loamy Aquic Ustifluvent; mud flat as fine Typic Haplaquept; Levee-plain complex as Typic Ustipsamment and fine loamy Typic Ustorthent; old Delta plain as fine Udic Ustochrept and Aeric Haplaquept and recent delta plain as fine loamy and coarse loamy Typic Ustorthent. The soils are mixed in mineralogy and Isohyperthermic in temperature regime.  相似文献   

11.
A detailed-reconnaissance soil survey of the Sangrur district was undertaken through systematic aerial photo-interpretation technique and a soil map on 1: 50,000 scale showing the association of soil series prepared. The salt-affected soils have been grouped into 4 soil associations and 8 soil series based on the diffrences in texture, drainge, profile development and degree of deterioration. The salt-affected soils are found both in plains and Channels. The piain unit without distinct parcelling (barren) white and fine textured tones represented the association of salic Natraqualfs (Ghabdan series) and Aquic Natruststalfs (Kaheru series). The piain units partly cultivated whitish-gray, fine to medium textured tones consisted of a association of Natraquic Calciorthids (Langrian and Narikc series) and Natraquic Camborthids (Isri Series). Lastly, the piain units with pattern of dark-tone and light mottles (mottled-iones,) distinct parceiling, cultivated consists of Typic Ustochrepts (Balewal series), Aquic Camborthids (Phaguwala series) and Natraquic Calciorthids (Marike series). The filled up Channels whitish-gray tones, concave relief, cultivated comprise wet soils (Jatwan series) which have been classified as Aeric Halaquepts. It is found that about 17% of the mapped area in Sangrur district is salt-affected, out of which 12% consisiing Ghabdan, Kaheru, Langrian and Isri series is severely salt-affected and rest 5% consisting, Phaguwala, Narike and Jatwan series is moderately to slightly affected.  相似文献   

12.
Soil and Soil Conservation surveys for watershed management were conducted using aerial photos of 1:60,000 scale in parts of North Cachar and Karbi-Anglong districts of Assam. The area was divided into different river catchments and sub-watersheds. The erosion, slope, landuse and soils in relation to physiogrphy were studied in each sub-watershed. The different physiographic units identified in the area were high, medium, low and very low hills; pediplains; alluvial plain and the valleys. These units were further subdivided based on slope, landuse and erosion etc. The soils were classified according to Soil Taxonomy. For priority determination, weightage was alloted to each of the sub-watersheds considering their physiography, slope, landuse, erosion,soil texture, depth and delivery ratio and sediment yield was calculated for each subwatershed. It has been found that out of 122875 ha, an area of 1745 ha had very high priority, 30590 ha high, 37290 ha medium, 51957 ha low and 1294 ha very low priority for soil conservation purposes.  相似文献   

13.
The present investigation has been designed to analyze the landform and soil relationship in a geologically complex terrain of Tirora tahsil of Gondia district, Maharashtra using remotely sensed data and GIS technique. The geomorphologic units of the study area were delineated through visual interpretation of IRS–ID LISS-III data based on the spatial variation of the image characteristics. Thirteen landform units have been identified in the tahsil. The slope varied from level to nearly level with an area of about 63.76% of the tahsil. Rest of the area ranged from very gentle to moderately steep slopes. During soil survey, soil profiles were studied for morphological features. Horizon-wise soil samples were collected from the representative soil profiles on each landform unit. The depth of soil varied from 25 to 160 cm and colour from dark brown to very dark grayish brown. The texture ranged from clay loam to clayey in accordance with higher and lower topographic positions respectively. Higher available water holding capacity (AWC 285 mm) is found in low-lying area and low to medium AWC (140 mm) is noticed in the soils developed at higher elevation. The soils reaction (pH) is strongly acidic in nature (pH 5.2) on dissected hills, linear ridge and moderately weathered pediments, whereas, the soils are moderately to slightly acidic in nature (pH 5.5 to 6.5) on hills, shallow weathered pediments, moderately weathered pediments, deeply weathered pediments, narrow valleys, and broad valley floors. Slightly alkaline condition (pH 7.6) was observed on foot slopes and aggraded valley fills. The electrical conductivity of the soils is found almost same in all landforms. The cation exchange capacity of the area varies from 10.5 to 51.5 cmol(p+)kg?1. The base saturation increases with decreasing elevation and slope. The four major soil orders viz, Entisols, Alfisols, Inceptisols and Vertisols are found in the study areas which are further classified into suborder and great group levels. The landform and soil relationship was analyzed to appraise the land resources in the tahsil. The study shows that the application of remotely sensed data and GIS are immensely helpful in land resources appraisal for their management on sustainable basis.  相似文献   

14.
A confirmatory study of soil physiographic units identified through aerial photo interpretation technique, in Yamuna alluvial plain, Haryana is presented here. The area under study is part of Yamuna alluvial plain in Sonepat district, Haryana. Shanwal and Malik (1980) studied and mapped this area (semi-detailed) on 1:25,000 scale through areial photo interpretation technique. The soil profile samples of major soil physiographic units of the area were fractionated into sand, silt and clay. Detail mineralagical studies were carried out through electron microscopic and X-ray diffractometer studies in order to know their nature and origin of the parent material. X-ray diffraction data shows that mineralogy of different fractions (Sand, silt and clay) of soils samples, of different physiographic units were similar except Lavee. In this area mica is the dominant day mineral in the soils followed by Kaolinite, chlorite, vermiculite and smectite in decreasing order of their abundances. The occurance of fibrous minerals in coarse clay and silt fraction of soil samples of Lavee physiographic unit is the interesting feature of this area. The presence of fibrous minerals indicates that this overlain material designated as natural Levee in this area is not the alluvium brought down by the river Yamuna but is aeolian material flown from adjoining deseret of Rajasthan and deposited as stabilized sand dune. The fibrous minerals have been reported earlier in the desert of Rajasthan.  相似文献   

15.
Soil mapping on the scale 1:50,000 was conducted in Tehri-Garhwal district of Uttar Pradesh using Survey of India Topographic maps and utilising aerial photographs of the area which were interpreted for demarcation of physiographic units, vegetation, drainage and other features relevant to soil development. Resulting soil map and soils and land use information have been helpful in presenting an optimum land use and management plan in the area keeping in view of the soils characteristics, terrain features and existing land use, Soils and physiographic interpretation in the area have highlighted significant soil-landscape relationships relevant to land utilization. The other factors responsible for soil formation which could be significant in the area i.e. climate and parent material were also taken into consideration apart from topography. Of all these factors topography was revealed to be the predominant factor governing soil formation in the area. Soil units mapped coincided with the physiographic units demarcated through aerial photo-interpretation. The area of the district could be divided into three climatic zones viz. (i) Cool temperate, (ii) Sub-tropical warm temperate and (iii) tropical following Kaushic (1962). It was noticed that in each climatic zone with the climate being almost uniform within the zone, irrespe tlve of variations in the parent material, soil development was markedly affected by topographly, variations which led to differences in soil characteristics particulary soil texture and amount of coarse fragments. In about 70 percent of the area of the district where slopes are steep to very steep, topography was revealed to be the dominant factor determining characteristic soil development. In the remaining part where slopes are moderate to gentle, parent material is the dominant factor followed by topography.  相似文献   

16.
The study area is one of the watersheds of North Pennar basin, covering an area of 570 km2 in Pavagada taluk of Tumkur district. The watershed has been subdivided into nine sub-watersheds namely Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur. These nine sub-watersheds have been evaluated to delineate groundwater potential zones based on the characteristics of geomorphic units together with slope, geology, lineaments, borewell data using Remote Sensing and Geographic Information System (GIS) techniques. Slope varies from nearly level (0–1%) to very steep (>35%). The different geomorphic units in each sub-watershed consist of denudational hills, residual hills, inselbergs, pediment inselberg complex, pediments, shallow weathered pediplains, moderately weathered pediplains and valley fills. The lineament map for each sub-watershed has been prepared and the trends were analysed with rose diagrams. The analysis of borewell locations and their yield data in association with lineaments at subwatersheds level reveals that the lineaments are acting as a pathway for groundwater movement. The integrated map comprising groundwater potential zones prepared by “Union” function using GIS indicate that valley fills and moderately weathered pediplains are very good to good, shallow weathered pediplains are good to moderate, pediment inselberg complex and pediments are moderate to poor and denudational hills, residual hills and inselbergs are poor to very poor groundwater prospect zones.  相似文献   

17.
In the present study efforts have been made to evaluate ground water potential zones for ground water targeting using IRS-IC LISS-II1 geo-coded data on 1:50,000 scale. The drainage, geology, geomorpholgoy and lineament information has been generated and integrated to evaluate hydro-geomorphological characteristics of the Gairnukh watershed, Bhandara district, Maharashtra for delineation of ground water potential zones. The analysis reveals that the deep valley fills with thick alluvium have excellent, shallow valley tills and deeply weathered pediplains with thin alluvium have very good and moderately weathered pediplains in the geological formations of Tirodi Gneiss and Sausar Groups have god ground water potential and these units are highly favourable for ground water exploration and development. Shallow weathered pediments in geological formations of Tirodi Gnesis and Sausar Groups are marked under moderate ground water potential zone. Shallow weathered pediplains in geological formations of Tiridi Gneiss and Sausor Groups are grouped under limited ground water potential category, except along the fractures/lineaments. Structural hills in geological formations of Tirodi Gneiss and Sausar Groups have poor ground water prospects. Inselbergs and Linear ridges in geological formations of Tirodi Gneiss are grouped under very poor ground water prospects zone. The good inter-relationship was found among the geological units, geomorphological units, lineament density, hydro-geomorphological zones and ground water yield data.  相似文献   

18.
Visual interpretation of IRS ID LISS-III fused with PAN data (1:12,500 scale) ofPatloinala micro-watershed of Puruliya district, West Bengal was carried out for delineating the physiographic units based on the variations in image characteristics. The major physiographic units identified were upland(Tanr), medium land(Baid), and low land(Bahal andKanali). The satellite remote sensing data coupled with ground truth were translated in terms of soils using composite interpretation map as base. The abstraction level attained was phases of soil series based on Soil Taxonomy. On the basis of physiographic variation and soil or soil site characteristics such as texture, depth, slope, erosion etc. the problem areas were identified and land use plan has been suggested for the overall development of the micro-watershed.  相似文献   

19.
Visual interpretation of LANDSAT imagery of 1∶250,000 scale (band 5 and 7) and 1∶1 M (FCC) covering 1611 km2 in Mewat area, Haryana was carried out for delineating the physiographic units. The physiographic units viz. hills, piedmont plain, intermontane basin and Yamuna alluvial plain were identified and delineated using interpretation elements. Soils and land use in relation to the physiographic units were studied during the field visit and are described in the paper.  相似文献   

20.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号