首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
非饱和土与饱和冻融土导湿系数的变化特征   总被引:2,自引:2,他引:2  
  相似文献   

2.
Several techniques such as laboratory column studies, under normal and accelerated gravity environments, numerical modeling and pedo-transfer functions have been employed by previous researchers to determine hydraulic conductivity of soils. However, these methods suffer with several limitations, particularly, as far as regeneration of in-situ soil conditions and boundary conditions, in an exceptionally small model, are concerned. Under these circumstances, in-situ lysimeters are found to be quite useful for conducting the investigations to obtain hydraulic conductivity of fully saturated or partially saturated soils. These lysimeters can easily be installed in the soil mass, without disturbing its state, and are large enough to exhibit representative soil mass that exist at the site. With this in view, an attempt was made in this study to determine hydraulic conductivity of the soil mass beneath a waste disposal site in India by installing a lysimeter. Details of the instrumentation are presented in this paper along with the methodology to determine hydraulic conductivity of the soil mass.  相似文献   

3.
This paper synthesizes the state-of-the art of the various laboratory testing techniques presently available for measuring the water hydraulic constitutive functions of unsaturated soils. Emphasis is on the laboratory testing techniques for measuring the soil–water retention curves and the water hydraulic conductivity functions of unsaturated soils. The significant recent advances in the investigation of the hydraulic behaviour of unsaturated swelling soils, are also presented. Comprehensive recent references on each measurement method are listed and discussed.  相似文献   

4.
To study the impact of salt water intrusion on two types of soils from west coast region of India were investigated in the laboratory. The key characteristics evaluated included Atterberg limits, compaction characteristics, hydraulic conductivity and chemical characteristics of selected soils. The sea at this coast receives effluent from different points and hence the characteristics change with time and locality. Therefore, to maintain uniform composition, 0.5 N sodium chloride solution (NaCl) was prepared in the laboratory and batch tests were used to determine the immediate effect on soils. Soil specimens were prepared by mixing the soils with 0.5 N NaCl in the increments of 0, 5, 10 and 20% by weight to vary the degree of contamination. Experimental results of soils mixed with 0.5 N NaCl showed that the maximum dry density increases and the optimum moisture content (OMC) decreases with increasing sodium chloride concentration. The study also revealed that the hydraulic conductivity of the soils tested increases with increase in sodium chloride concentration. The Atterberg limits of contaminated specimens show a remarkable change when compared with uncontaminated specimens.  相似文献   

5.
This paper describes a first-order reliability-based analysis to identify the best-fit probability distributions for hydraulic conductivity. The analysis involved the use of existing hydraulic conductivity model developed from laboratory data and applied to lateritic soils, considering variations in soil parameters. Plots of reliability indices versus coefficients of variation were first made for hydraulic conductivity as well as for initial degree of saturation, plasticity index and clay content, considering three compactive efforts and log-normally distributed hydraulic conductivity. The traditional two-parameter log-normal distribution was compared to four alternative distributions: normal, gamma, Gumbel (extreme value type I-EVT-I) and Weibull (extreme value type III-EVT-III). The analysis showed that the Weibull and normal are the best-fit probability distributions for the hydraulic conductivity based reliability data. Hydraulic conductivities predicted from reliability analysis were used to demonstrate the possibility of applying the results obtained in this research by practising engineers. Experimentally-determined hydraulic conductivities were shown to be in good agreement with predicted values.  相似文献   

6.
Hydraulic conductivity is a dominant parameter in the design of engineered waste disposal facilities such as landfill liners and covers, lagoon liners and slurry walls. It is of interest to a geotechnical or geo-environmental engineer to develop a predictive method of determining the hydraulic conductivity of fine-grained soils, in order to assess its suitability as a liner material. To predict the hydraulic conductivity of soils, researchers and geotechnical engineers have attempted to correlate it with index properties of the soils, such as the liquid limit, void ratio and specific surface. Based on the present study a predictive method has been developed in this paper to predict the hydraulic conductivity in terms of void ratio and shrinkage index (Liquid limit – shrinkage limit) for remoulded fine-grained soils. Though the initial conditions for the soil will affect the hydraulic conductivity behaviour to some extent, both the void ratio and soil characteristics are primary factors in affecting the hydraulic conductivity. Therefore for predictive purpose, the study of hydraulic conductivity behaviour of remoulded fine-grained soils as presented in this paper can be found to be useful for compacted soils also.  相似文献   

7.
Microstructure and hydraulic conductivity of a compacted lime-treated soil   总被引:1,自引:0,他引:1  
Under a given compaction energy and procedure, it is known that maximum dry density of a soil is lowered due to lime addition. This modification of maximum dry density could alter the hydraulic conductivity of the soil. The main object of this study was to assess the impact of lime-stabilization on a silt soil microstructure and then on saturated hydraulic conductivity. An investigation at the microscopic level with mercury intrusion porosimetry showed that lime treatment induced the formation of a new small class, with a diameter lower than 3 × 103 Å in the compacted soil. This class is responsible for the difference in dry density between the treated and the untreated sample after compaction. It is shown that this small pores class was not altered by the compaction water content, the compaction procedure or the dry density. As in untreated soils, only the larger pores were modified by the compaction water content and the compaction procedure in the lime treated samples. The hydraulic conductivity appeared to be only related to the largest pores volume of the tested silt, regardless of lime treatment. Therefore, this study demonstrated that even if addition of lime resulted in a dramatic change of the maximum dry density of the tested silty soil, its effect on hydraulic conductivity is limited.  相似文献   

8.
Shi  X. S.  Zeng  Yiwen  Shi  Congde  Ma  Zhanguo  Chen  Wenbo 《Acta Geotechnica》2022,17(9):3839-3854

Gap-graded granular soils are used as construction materials worldwide, and their hydraulic conductivity depends on their relative content of coarse and fine grains, initial conditions, and particle shape. In this study, a series of constant head hydraulic conductivity tests were performed on gap-graded granular soils with different initial relative densities, fine contents, and particle shapes. The test results show that the hydraulic conductivity decreases with an increase in fine fraction and then remains approximately constant beyond the “transitional fine content.” The role of the structural effect on the hydraulic conductivity is different from that on the mechanical properties (such as stiffness and shear strength). This can be attributed to the degree of filling within inter-aggregate voids, disturbance of soil structure, and densified fine bridges between coarse aggregates. The equivalent void ratio concept was introduced into the Kozeny–Carman formula to capture the effect of fines (aggregates) on the “coarse-dominated” (“fine-dominated”) structure, and a simple model is proposed to capture the change of hydraulic conductivity of gap-granular soils. The model incorporates a structural variable to capture the effect of fines on “coarse-dominated” structure and coarse aggregates on “fine-dominated” structure. The performance of the model was verified with experimental data from this study and previously reported data compiled from the literature. The results reveal that the proposed model is simple yet effective at capturing the hydraulic conductivity of gap-graded granular soils with a wide range of fine contents, initial conditions, and particle shapes.

  相似文献   

9.
The determination of slope stability for existing slopes is challenging, partly due to the spatial variability of soils. Reliability-based design can incorporate uncertainties and yield probabilities of slope failure. Field measurements can be utilised to constrain probabilistic analyses, thereby reducing uncertainties and generally reducing the calculated probabilities of failure. A method to utilise pore pressure measurements, to first reduce the spatial uncertainty of hydraulic conductivity, by using inverse analysis linked to the Ensemble Kalman Filter, is presented. Subsequently, the hydraulic conductivity has been utilised to constrain uncertainty in strength parameters, usually leading to an increase in the calculated slope reliability.  相似文献   

10.
陈辉  韦昌富  胡国辉 《岩土力学》2013,34(2):347-352
在Wei & Muraleetharan基于非饱和土两相流交界面上的动态相容条件提出的多孔介质热动力学混合物理论模型基础上,推导出能描述溢出量与时间关系的溢出量演化方程。根据溢出量演化方程,结合一定变化规律的基质吸力序列,建立了给定基质吸力序列作用下利用多步流动试验瞬态溢出量数据确定非饱和土-水力学参数的方法。通过对低液限粉土、低液限黏土的多步流动试验研究发现,利用瞬态溢出量数据的拟合来确定非饱和土-水力学参数的方法而得到的各基质吸力作用下试样饱和度和渗透系数预估值,与联合测试系统测得的各基质吸力作用下试样的饱和度及渗透系数接近。  相似文献   

11.
In general, faults cutting through the unconsolidated sediments of the Roer Valley Rift System (RVRS), The Netherlands, form strong barriers to horizontal groundwater flow. The relationships between deformation mechanisms along fault zones and their impact on the hydrogeological structure of the fault zone are analyzed in a shallow (0–5 m below land surface) trench over one of the faults in the study area. Recently developed digital-image-analysis techniques are used to estimate the spatial distribution of hydraulic conductivity at the millimeter-scale and to describe the micromorphologic characteristics of the fault zone. In addition, laboratory measurements of hydraulic conductivity on core-plug samples show the larger-scale distribution of hydraulic conductivity in the damage zone flanking the main fault plane. Particulate flow is the deformation mechanism at shallow depths, which causes the damage zone around the fault, in the sand-rich parts, to have a relatively enhanced hydraulic conductivity. The fault core is characterized by reduced hydraulic conductivity due to clay smearing, grain-scale mixing, and iron-oxide precipitation. Electronic Publication  相似文献   

12.
Saturated hydraulic conductivity (K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ~0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (~2 m). In total, 368 K s measurements were made on ~350 m of borehole cores originating from the Campine basin, northern Belgium, while ~5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2?=?0.35 for ordinary kriging (laboratory K s only) to R 2?=?0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.  相似文献   

13.
探针法测定冻土的导水率   总被引:1,自引:0,他引:1  
  相似文献   

14.
Domestic wastewater-treatment system is today a widely held technique. In order to evaluate the efficiency of these systems, it is necessary to determinate the in situ hydraulic conductivity of the water-treatment granular materials constituting them. The in situ measurement of the hydraulic conductivity of soils has proven to be imprecise, take a long time. Empirical equations based on the physical properties of soil have been proposed to overcome these difficulties. In this context, the originality of this paper is to propose an in situ method to obtain reliable input parameters for the predictive equations of Chapuis (Can Geotech J 41(5): 787–795, 2004) and Carrier (J Geotech Geoenviron Eng 129(11): 1054–1056, 2003) by using both a penetrometer and a geoendoscope. This method is described in the first part of this paper. Then, the validation of the method based on laboratory tests performed under controlled conditions for three kinds of soils is presented. Hydraulic conductivity obtained when applying the method is compared to that measured by a Darcy permeameter. The difference between these two hydraulic conductivities is less than 25%. Finally, the precision of the results is discussed.  相似文献   

15.
分形渗透模型在饱和冻土中的应用   总被引:1,自引:0,他引:1  
陈磊  李东庆  明锋 《冰川冻土》2019,41(6):1414-1421
冻土中的渗透系数对于评估冻土工程中的水,热和溶质迁移至关重要。以往研究表明,渗透系数主要依赖孔隙结构,经常被描述为孔径大小和孔隙率,但是这两个参数并不能充分地表征孔隙结构。为加强对孔隙结构的描述,引用分形理论研究了冻土中的渗透系数。基于非均匀毛细管束模型和分形理论,提出了饱和冻土中渗透系数的分形模型,并提出通过土体冻结特征曲线获取冻土中孔径分布的理论方法。为了验证分形模型的有效性,对已有实验数据进行分析。分析表明,分形渗透系数模型是毛细管分维、最大孔径、黏度和迂曲度的函数,孔径分布变化是导致冻土渗透系数变化的根本原因。通过对比,计算值与实测值吻合较好。结果表明分形模型可以较好的预测冻土中的渗透系数,研究结果可为冻土渗透机理研究提供参考。  相似文献   

16.
This study proposed an inverse modelling procedure for evaluating the anisotropic hydraulic conductivity and its variation induced by excavation in fractured rocks by integrating a strain-dependent hydraulic conductivity model. The time-series measurements of both hydraulic head and discharge were used to construct the objective function for improving the reliability, which was solved with a combined method of orthogonal design, transient groundwater flow modelling, artificial neural network and genetic algorithm-based optimization for reducing the computational cost. The proposed methodology proves its effectiveness by successful inverse modelling of the groundwater flow around the underground caverns at the Jinping-I Hydropower Station.  相似文献   

17.
Measurements of spectral induced polarization for environmental purposes   总被引:2,自引:0,他引:2  
Hydraulic permeability is one of the most important parameters for the evaluation of sediments relevant to environmental and hydrogeological problems. Up to now, permeability could be determined only by time-consuming and expensive methods like pumping tests or sampling and laboratory investigations. The results are confined to few locations, and they depend on the scale of the investigation method. Measurements on rock samples in a laboratory can differ significantly from well test results. Geophysical measurements are performed on different scales from high resolution measurements in boreholes up to large-scale soundings. Variations in permeability are mainly caused by varying grain size and by changes in porosity. A decrease of average grain diameter results in an increasing internal surface area. Petrophysical investigations have shown a reliable correlation between the imaginary part of electrical conductivity and the porespace-related internal surface. The formation resistivity factor, which is related to porosity, can be determined by geoelectrical measurements if the electrical conductivity of the pore fluid is known. The internal surface area and the formation factor are the only two parameters used by a Kozeny-Carman-like equation to evaluate the permeability or hydraulic conductivity for the investigated representative volume. Complex electrical conductivity is determined by measurements of induced polarization in the frequency domain. Frequencies below 10 Hz are used to avoid electromagnetic coupling. The permeability values determined by electrical measurements in boreholes can well be compared with those derived from the grain size distribution of samples. The same algorithm can be applied to evaluate the hydraulic conductivity of subsurface layers by complex resistivity soundings. The high sensitivity of the imaginary conductivity component to changes at the internal surface may be used as an indicator for contaminations.  相似文献   

18.
The aim of this work is the field hydraulic characterisation of Mnasra soils in northern Morocco, which represents an essential step to study the hydraulic and chemical transports through the vadose zone. We have used a tension infiltrometer associated with a transient axisymmetric infiltration method to determine the hydraulic conductivity, which reduces the duration of measurements. This allows us to characterise a large area with many measurements. Parameters of the characteristic functions K(h) and θ(h) are estimated for six different soils belonging to two geomorphologically different domains: a sandy zone and an alluvial plain. To cite this article: K. Tamoh, A. Maslouhi, C. R. Geoscience 336 (2004).  相似文献   

19.
许波  雷国辉  郑强  刘加才 《岩土力学》2014,35(6):1607-1616
为评估涂抹区土体压缩和渗透系数变化对含竖向排水体地基固结的影响,采用等体积应变假设,考虑涂抹区土体的压缩变形及其水平向渗透系数沿径向分别呈线性和抛物线分布,并考虑井阻作用以及地基附加球应力沿深度任意分布,推导了随时间线性堆载预压条件下固结微分方程的显式解析解答,分析了涂抹区半径、水平向渗透系数的分布模式、以及体积压缩系数对地基整体平均固结度的影响。结果表明,涂抹区土体采用均匀折减的水平向渗透系数明显低估了地基的固结速率,而当涂抹区半径较大时,不考虑涂抹区土体的压缩变形将会高估地基的固结速率。在含竖向排水体地基固结问题的分析中,这些影响不可忽视。  相似文献   

20.
荒漠地区生物土壤结皮的水文物理特征分析   总被引:15,自引:0,他引:15       下载免费PDF全文
通过室内压力陶土板系统测定土壤含水率与基质势的关系与Star-1土壤水分物理特征测定系统确定非饱和土壤水力传导度的方法,结合应用van Genuchten公式模拟,分析了位于腾格里沙漠东南缘包兰铁路沙坡头段人工生态防护体系生物土壤结皮的水文物理特征,确定了其水分特征曲线、非饱和土壤水力传导度、非饱和弥散系数,并与原始沙丘沙进行比较。结果表明,生物土壤结皮的持水能力是沙丘沙的3~9倍。当土壤基质势在-1~-3 000 cm的较高范围变化时,生物土壤结皮平均非饱和水力传导度低于沙丘沙(约为12%);而当土壤基质势在-3 000~-15 000 cm的较低范围变化时,沙丘沙的平均非饱和水力传导度又大大低于生物土壤结皮(约为91.0%)。正是由于生物土壤结皮特殊的质地与结构,使其非饱和水力传导度随着土壤基质势的降低,以及土壤含水量的减少,而趋于增大。与原始沙丘沙比较,生物土壤结皮独特的水文物理特点决定了它对荒漠地区土壤微生境的改善与促进作用,特别是通常情况下的高持水能力与低土壤基质势条件下的较高非饱和水力传导度,能够提高浅层土壤水分的有效性,有利于人工生态防护体系主要组分浅根系灌木、草本植物与小型土壤动物的生存繁衍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号