首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyse the redshift space topology and geometry of the nearby Universe by computing the Minkowski functionals of the Updated Zwicky Catalogue (UZC). The UZC contains the redshifts of almost 20 000 galaxies, is 96 per cent complete to the limiting magnitude m Zw=15.5, and includes the Center for Astrophysics (CfA) Redshift Survey (CfA2). From the UZC we can extract volume-limited samples reaching a depth of 70  h −1 Mpc before sparse sampling dominates. We quantify the shape of the large-scale galaxy distribution by deriving measures of planarity and filamentarity from the Minkowski functionals. The nearby Universe shows a large degree of planarity and a small degree of filamentarity. This quantifies the sheet-like structure of the Great Wall, which dominates the northern region (CfA2N) of the UZC. We compare these results with redshift space mock catalogues constructed from high-resolution N -body simulations of two cold dark matter (CDM) models with either a decaying massive neutrino ( τ CDM) or a non-zero cosmological constant (ΛCDM). We use semi-analytic modelling to form and evolve galaxies in these dark matter‐only simulations. We are thus able, for the first time, to compile redshift space mock catalogues which contain galaxies, along with their observable properties, rather than dark matter particles alone. In both models the large-scale galaxy distribution is less coherent than the observed distribution, especially with regard to the large degree of planarity of the real survey. However, given the small volume of the region studied, this disagreement can still be a result of cosmic variance, as shown by the agreement between the ΛCDM model and the southern region of CfA2.  相似文献   

2.
We follow the evolution of the galaxy population in a ΛCDM cosmology by means of high-resolution N -body simulations in which the formation of galaxies and their observable properties are calculated using a semi-analytic model. We display images of the spatial distribution of galaxies in the simulations that illustrate its evolution and provide a qualitative understanding of the processes responsible for the various biases that develop. We consider three specific statistical measures of clustering at     and     : the correlation length (in both real and redshift space) of galaxies of different luminosity, the morphology–density relation and the genus curve of the topology of galaxy isodensity surfaces. For galaxies with luminosity below L ∗, the     correlation length depends very little on the luminosity of the sample, but for brighter galaxies it increases very rapidly, reaching values in excess of 10  h −1 Mpc. The 'accelerated' dynamical evolution experienced by galaxies in rich clusters, which is partly responsible for this effect, also results in a strong morphology–density relation. Remarkably, this relation is already well-established at     . The genus curves of the galaxies are significantly different from the genus curves of the dark matter, however this is not a result of genuine topological differences but rather of the sparse sampling of the density field provided by galaxies. The predictions of our model at     will be tested by forthcoming data from the 2dF and Sloan galaxy surveys, and those at     by the DEEP and VIRMOS surveys.  相似文献   

3.
4.
Using high-resolution simulations within the cold dark matter (CDM) and warm dark matter (WDM) models, we study the evolution of small-scale structure in the local volume, a sphere of 8-Mpc radius around the Local Group. We compare the observed spectrum of minivoids in the local volume with the spectrum of minivoids determined from the simulations. We show that the ΛWDM model can easily explain both the observed spectrum of minivoids and the presence of low-mass galaxies observed in the local volume, provided that all haloes with circular velocities greater than 20 km s−1 host galaxies. On the contrary, within the ΛCDM model the distribution of the simulated minivoids reflects the observed one if haloes with maximal circular velocities larger than  35 km s−1  host galaxies. This assumption is in contradiction with observations of galaxies with circular velocities as low as 20 km s−1 in our local Universe. A potential problem of the ΛWDM model could be the late formation of the haloes in which the gas can be efficiently photoevaporated. Thus, star formation is suppressed and low-mass haloes might not host any galaxy at all.  相似文献   

5.
The alignment of clusters of galaxies with their nearest neighbours and between clusters within a supercluster is investigated using simulations of 5123 dark matter particles for ΛCDM and τ CDM cosmological models. Strongly significant alignments are found for separations of up to 15  h −1 Mpc in both cosmologies, but for the ΛCDM model the alignments extend up to separations of 30  h −1 Mpc. The effect is strongest for nearest neighbours, but is not significant enough to be useful as an observational discriminant between cosmologies. As a check of whether this difference in alignments is present in other cosmologies, smaller simulations with 2563 particles are investigated for four different cosmological models. Because of poor number statistics, only the standard CDM model shows indications of having different alignments from the other models.  相似文献   

6.
We use the Millennium Simulation (MS) to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a Lambda cold dark matter (ΛCDM) cosmology. We present results for radii in the range  10  h −1 kpc < r < 30  h −1 Mpc  and for halo masses in the range  4 × 1010 < M 200 < 4 × 1014  h −1 M  . Both at   z = 0  and at   z = 0.76  these cross-correlations are surprisingly well fitted if the inner region is approximated by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and the maximum of the two is adopted where they are comparable. We use a simulation of galaxy formation within the MS to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy–galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to ≲10 per cent. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. Our galaxy formation simulation already reproduces current galaxy–galaxy lensing data quite well. The characteristic features predicted in the galaxy–galaxy lensing signal should provide a strong test of the ΛCDM cosmology as well as a route to understanding how galaxies form within it.  相似文献   

7.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

8.
Mass-to-light ratio gradients in early-type galaxy haloes   总被引:1,自引:0,他引:1  
Owing to the fact that the near future should see a rapidly expanding set of probes of the halo masses of individual early-type galaxies, we introduce a convenient parameter for characterizing the halo masses from both observational and theoretical results:  ∇ϒ  , the logarithmic radial gradient of the mass-to-light ratio. Using halo density profiles from Λ-cold dark matter (CDM) simulations, we derive predictions for this gradient for various galaxy luminosities and star formation efficiencies  εSF  . As a pilot study, we assemble the available  ∇ϒ  data from kinematics in early-type galaxies – representing the first unbiased study of halo masses in a wide range of early-type galaxy luminosities – and find a correlation between luminosity and  ∇ϒ  , such that the brightest galaxies appear the most dark-matter dominated. We find that the gradients in most of the brightest galaxies may fit in well with the ΛCDM predictions, but that there is also a population of fainter galaxies whose gradients are so low as to imply an unreasonably high star formation efficiency  εSF > 1  . This difficulty is eased if dark haloes are not assumed to have the standard ΛCDM profiles, but lower central concentrations.  相似文献   

9.
Using N -body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter   w =−0.6  . The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one.
The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by  σH= (88 ± 20  km s−1) × ( R /7 Mpc)  . The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with  −0.1 < δρ/ρ < 0.6  on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe.  相似文献   

10.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

11.
We analysed the distribution of void sizes in the two-dimensional slices of the Las Campanas Redshift Survey (LCRS). Fourteen volume-limited subsamples were extracted from the six slices to cover a large part of the survey and to test the robustness of the results against cosmic variance. Thirteen samples were randomly culled to produce homogeneously selected samples. We then studied the relationship between the cumulative area covered by voids and the void size as a property of the void hierarchy. We found that the distribution of void sizes scaled with the mean galaxy separation, λ . In particular, we found that the size of voids covering half of the area is given by D med≈ λ +(12±3)  h −1 Mpc. Next, by employing an environmental density threshold criterion to identify mock galaxies, we were able to extend this analysis to mock samples from dynamical N -body simulations of cold dark matter (CDM) models. To reproduce the observed void statistics, overdensity thresholds of δ th≈0,…,1 are necessary. We compared standard (SCDM), open (OCDM), vacuum energy dominated (ΛCDM) and broken scale invariant CDM models (BCDM): we found that both the void size distribution and the two-point correlation function provided important and complementary information on the large-scale matter distribution. The dependence of the void statistics on the threshold criterion for the mock galaxy identification showed that the galaxy biasing was more crucial for the void size distribution than were differences between the cosmological models.  相似文献   

12.
This is the third paper in a series which combines N -body simulations and semi-analytic modelling to provide a fully spatially resolved simulation of the galaxy formation and clustering processes. Here we extract mock redshift surveys from our simulations: a cold dark matter model with either Ω0=1 ( τ CDM) or Ω0=0.3 and Λ=0.7 (ΛCDM). We compare the mock catalogues with the northern region (CfA2N) of the Center for Astrophysics (CfA) Redshift Surveys. We study the properties of galaxy groups and clusters identified using standard observational techniques, and also the relation of these groups to real virialized systems. Most features of CfA2N groups are reproduced quite well by both models with no obvious dependence on Ω0. Redshift‐space correlations and pairwise velocities are also similar in the two cosmologies. The luminosity functions predicted by our galaxy formation models depend sensitively on the treatment of star formation and feedback. For the particular choices of Paper I they agree poorly with the CfA survey. To isolate the effect of this discrepancy on our mock redshift surveys, we modify galaxy luminosities in our simulations to reproduce the CfA luminosity function exactly. This adjustment improves agreement with the observed abundance of groups, which depends primarily on the galaxy luminosity density, but other statistics, connected more closely with the underlying mass distribution, remain unaffected. Regardless of the luminosity function adopted, modest differences with observation remain. These can be attributed to the presence of the 'Great Wall' in the CfA2N. It is unclear whether the greater coherence of the real structure is a result of cosmic variance, given the relatively small region studied, or reflects a physical deficiency of the models.  相似文献   

13.
We present the Millennium-II Simulation (MS-II), a very large N -body simulation of dark matter evolution in the concordance Λ cold dark matter (ΛCDM) cosmology. The MS-II assumes the same cosmological parameters and uses the same particle number and output data structure as the original Millennium Simulation (MS), but was carried out in a periodic cube one-fifth the size  (100  h −1 Mpc)  with five times better spatial resolution (a Plummer equivalent softening of  1.0  h −1 kpc  ) and with 125 times better mass resolution (a particle mass of  6.9 × 106  h −1 M  ). By comparing results at MS and MS-II resolution, we demonstrate excellent convergence in dark matter statistics such as the halo mass function, the subhalo abundance distribution, the mass dependence of halo formation times, the linear and non-linear autocorrelations and power spectra, and halo assembly bias. Together, the two simulations provide precise results for such statistics over an unprecedented range of scales, from haloes similar to those hosting Local Group dwarf spheroidal galaxies to haloes corresponding to the richest galaxy clusters. The 'Milky Way' haloes of the Aquarius Project were selected from a lower resolution version of the MS-II and were then resimulated at much higher resolution. As a result, they are present in the MS-II along with thousands of other similar mass haloes. A comparison of their assembly histories in the MS-II and in resimulations of 1000 times better resolution shows detailed agreement over a factor of 100 in mass growth. We publicly release halo catalogues and assembly trees for the MS-II in the same format within the same archive as those already released for the MS.  相似文献   

14.
It has recently been shown that galaxy formation models within the Λ cold dark matter cosmology predict that, compared to the observed population, small galaxies (with stellar masses  <1011 M  ) form too early, are too passive since   z ∼ 3  and host too old stellar populations at   z = 0  . We then expect an overproduction of small galaxies at   z ≳ 4  that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the morgana galaxy formation model and grasil spectrophotometric  +  radiative transfer code to generate mock catalogues of deep fields observed with Hubble Space Telescope Advanced Camera for Surveys. We add observational noise and the effect of Lyman α emission, and perform colour–colour selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i -dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of   z 850∼ 27 V   -dropouts at   z ∼ 5  . We quantify the properties of these 'excess' galaxies and discuss the implications: these galaxies are hosted in dark matter haloes with circular velocities in excess of 100 km s−1, and their suppression may require a deep rethinking of stellar feedback processes taking place in galaxy formation.  相似文献   

15.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

16.
We test the ability of the numerical action method (NAM) to recover the individual orbit histories of mass tracers in an expanding universe, given the masses and redshift-space coordinates at the present epoch. The mass tracers are represented by dark matter (DM) haloes identified in a region of radius  26  h −1 Mpc  of a high-resolution N -body simulation of the standard Λ cold dark matter (CDM) cosmology. Since previous tests of NAM at this scale have traced the underlying distribution of DM particles rather than extended haloes, our study offers an assessment of the accuracy of NAM in a scenario which more closely approximates the complex dynamics of actual galaxy haloes. We show that NAM can recover the present-day halo distances with typical distance errors of less than 3 per cent and radial peculiar velocities with a dispersion of  ∼130 km s−1  . The accuracy of individual orbit reconstructions was limited by the inability of NAM, in some instances, to correctly model the positions of haloes at early times solely on the basis of the redshifts, angular positions and masses of the haloes at the present epoch. Improvements in the quality of NAM reconstructions may be possible using the present-day three-dimensional halo velocities and distances to further constrain the dynamics. This velocity data is expected to become available for nearby galaxies in the coming generations of observations by Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ).  相似文献   

17.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

18.
Differences in clustering properties between galaxy subpopulations complicate the cosmological interpretation of the galaxy power spectrum, but can also provide insights about the physics underlying galaxy formation. To study the nature of this relative clustering, we perform a counts-in-cells analysis of galaxies in the Sloan Digital Sky Survey in which we measure the relative bias between pairs of galaxy subsamples of different luminosities and colours. We use a generalized  χ2  test to determine if the relative bias between each pair of subsamples is consistent with the simplest deterministic linear bias model, and we also use a maximum likelihood technique to further understand the nature of the relative bias between each pair. We find that the simple, deterministic model is a good fit for the luminosity-dependent bias on scales above  ∼2  h −1 Mpc  , which is good news for using magnitude-limited surveys for cosmology. However, the colour-dependent bias shows evidence for stochasticity and/or non-linearity which increases in strength towards smaller scales, in agreement with previous studies of stochastic bias. Also, confirming hints seen in earlier work, the luminosity-dependent bias for red galaxies is significantly different from that of blue galaxies: both luminous and dim red galaxies have higher bias than moderately bright red galaxies, whereas the biasing of blue galaxies is not strongly luminosity dependent. These results can be used to constrain galaxy formation models and also to quantify how the colour and luminosity selection of a galaxy survey can impact measurements of the cosmological matter power spectrum.  相似文献   

19.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

20.
We use high-resolution hydrodynamical simulations to investigate the spatial correlation between weak  ( N H  i < 1015 cm−2)  Lyα absorbers and gas-rich galaxies in the local Universe. We confirm that Lyα absorbers are preferentially expected near gas-rich galaxies and that the degree of correlation increases with the column density of the absorber. The real-space galaxy auto-correlation is stronger than the cross-correlation (correlation lengths   r 0,gg= 3.1 ± 0.1 Mpc  h −1  and   r 0,ag= 1.4 ± 0.1 Mpc  h −1  , respectively), in contrast with the recent results of Ryan-Weber, and the auto-correlation of absorbers is very weak. These results are robust to the presence of strong galactic winds in the hydrodynamical simulations. In redshift space, a further mismatch arises since at small separations the distortion pattern of the simulated galaxy–absorber cross-correlation function is different from the one measured by Ryan-Weber. However, when sampling the intergalactic medium along a limited number of lines-of-sight, as in the real data, uncertainties in the cross-correlation estimates are large enough to account for these discrepancies. Our analysis suggests that the statistical significance of difference between the cross-correlation and auto-correlation signal in current data sets is ∼1σ only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号