首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the evolution of the Yuguang Basin South Margin Fault (YBSMF) in northwest Beijing was carried out. We found that the propagation and growth of faults most often occurred often at two locations: the fault overlapping zone and the uneven or rough fault segment. Through detailed observation and analysis of all cropouts of faults along the YBSMF from zone a to zone i, we identified three major factors that dominate or affect fault propagation and growth. First, the irregularity of fault geometry determine the propagation and growth of the fault, and therefore, the faults always propagate and grow at such irregular fault segments. The fault finally cuts off and eliminates its irregularity, making the fault geometry and fault plane smoother than before, which contributes to the slipping movement of the half-graben block in the basin. Second, the scale of the irregularity of the fault geometry affects the result of fault propagation and growth, that is, the degree of the cutting off of fault irregularity. The degree of cutting off decreases as irregularity scale increases. Third, the maximum possible slip displacement of the fault segment influences the duration of fault propagation and growth. The duration at the central segments with a large slip displacement is longer than that at the end segments with a smaller slippage value.  相似文献   

2.
Fault attributes generally display a consistent power–law-scaling relationship. Based on new 3D seismic data, however, we found some exceptional fault attribute relationships of lengths (L)–throw (T) (vertical component of displacement), overlap zone length (Lo)–width (Wo) from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin. The L–T relationship shows two linear segments with breakup at ~40 km in fault length. This presents an exceptional throw increase in the second stage, which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone. The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns, suggesting multiple fault differential growth and periodic increase in fault size. Therefore, we propose a new alternative growth model of fault attributes in strike-slip fault zones, in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.  相似文献   

3.
Field investigations allow to constrain the co-seismic surface rupture zone of ~400km with a strike-slip up to 16.3 m associated with the 2001Mw 7.8 Central Kunlun earthquake that occurred along the western segment of the Kunlun fault,northern Tibet.The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault.The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism.Theg eologic and topographice vidence clearly shows that spatial distributions of the co-seismic surface ruptures are re-stricted by the pre-existing geological structures of the Kunlun fault.  相似文献   

4.
The Quaternary activity of the faults at the eastern end of the Altyn Tagh fault, including the Dengdengshan–Chijiaciwo, Kuantanshan and Heishan faults, was studied on the basis of interpretation of satellite images, trenching, geomorphologic offset measurements and dating. The Altyn Tagh fault has extended eastwards to Kuantanshan Mountain. The left–slip rates of the Altyn Tagh fault decreased through the Qilianshan fault and were transformed into thrust and folds deformation of many NW–trending faults within the Jiuxi basin. Meanwhile, under NE–directed compression of the Tibetan plateau, thrust dominated the Dengdengshan–Chijiaciwo fault northeast of the Kuantanshan uplift with a rate lower than that of every fault in the Jiuxi basin south of the uplift, implying that tectonic deformation is mainly confined to the plateau interior and the Hexi Corridor area. From continual northeastward enlargement of the Altyn Tagh fault, the Kuantanshan uplift became a triangular wedge intruding to the east, while the Kuantanshan area at the end of this wedge rose up strongly. In future, the Altyn Tagh fault will continue to spread eastward along the Heishan and Jintananshan faults. The results have implications for understanding the propagation of crustal deformation and the mechanism of the India–Eurasian collision.  相似文献   

5.
Little attention had been paid to the intracontinental strike-slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re-measured GPS data in 2003, an increasing amount of attention has been paid to this neglected fault. The local relief and transverse swath profile show that the Longriba fault is the boundary line that separates the high and flat tomography of the Tibet plateau from the high and precipitous tomography of Orogen. In addition, GPS data shows that the Longriba fault is the boundary line where the migratory direction of the Bayan Har block changed from eastward to southeastward. The GPS data shows that the Longriba fault is the boundary fault of the sub-blocks of the eastern Bayan Har block. We built three-dimensional models containing the Longriba fault and the middle segment of the Longmenshan fault, across the Bayan Har block and the Sichuan Basin. A nonlinear finite element method was used to simulate the fault behavior and the block deformation of the Eastern Tibetan Plateau. The results show that the low resistivity and low velocity layer acts as a detachment layer, which causes the overlying blocks to move southeastward. The detachment layer also controls the vertical and horizontal deformation of the rigid Bayan Har block and leads to accumulation strain on the edge of the layer where the Longmenshan thrust is located. After a sufficient amount of strain has been accumulated on the Longmenshan fault, a large earthquake occurs, such as the 2008 Wenchuan earthquake. The strike slip activity of the Longriba fault, which is above the low resistivity and low velocity layer, partitions the lateral displacements of the Bayan Har block and adjusts the direction of motion of the Bayan Har block, from the eastward moving Ahba sub-block in the west to southeastward moving Longmenshan sub-block in the east.  相似文献   

6.
The slip rate of Yema River–Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82 ± 0.20 mm/a at Dazangdele site,2.00 ± 0.24 mm/a at Shibandun site,and 0.50 ± 0.36 and 2.80 ± 0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains,whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.  相似文献   

7.
The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.  相似文献   

8.
Secondary/minor structures occurring along the main fault surfaces are important indicators for judging the kinematic characteristics of faults. However, many factors can lead to the formation of these structures, which results in the difficulty for rapid judgment and application in the fields. A series of secondary faults/fractures developed due to the movement of main faults are the most important and widespread phenomena in the scope of brittle deformation. The morphology of the main fault surfaces is various, and former researchers mainly discussed the structures on the main even fault surfaces. However, the fluctuation of fault surfaces is the intrinsic character of the faults, and the intersection between the main fault and secondary faults/fractures can produce a series of kinematic indicators on the main fault surfaces. Based on previous studies and our observations, i.e. the structural traces of the P, R, R’, T and X shears/faults along the main faults, some indicators which are rarely reported previously, are described in the paper. Furthermore, their reliabilities are also discussed, and more practical and reliable criteria are brought forward. We suggest that the simple application of congruous and incongruous steps without knowing their exact origins should be abandoned in the fields, and several types of indicators along one fault surface should be checked with each other as much as possible. Meanwhile, the origins of some other arcuate indicators on the fault surfaces are also discussed, and new models are brought forward.  相似文献   

9.
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks.  相似文献   

10.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

11.
THREE-DIMENSIONAL DEFORMATION ALONG THE ALTYN TAGH FAULT ZONE AND UPLIFT OF THE ALTYN MOUNTAIN, NORTHERN TIBET  相似文献   

12.
PALEOCENE—MIDDLE EOCENE DEXTRAL STRIKE-SLIP DEFORMATION AND ITS TECTONIC IMPLICATION IN THE WESTERN YUNNAN, CHINA  相似文献   

13.
LATE QUATERNARY FAULTING OF JIALI FAULT1 ChungS ,LoC ,LeeT ,etal.DiachronousupliftoftheTibetanplateaustarting 40Myrago[J].Nature ,1998,394:76 9~773. 2 ColemanM ,HodgesK .EvidenceforTibetanplateauupliftbefore 14Myragofromanewminimumageforeast westexten sion[J].Nature ,1995 ,374:49~ 5 2 . 3 HarlandWB ,ArmstrongRL ,CoxAV ,etal.Ageologictimescale 1989[J].Cambridge ,U .K :CambridgeUnivPress,1990 . 4 HarrisonTM ,CopelandP ,KiddWSF ,etal.RaisingTibet[J].…  相似文献   

14.
CENOZOIC DISPLACEMENT HISTORY OF THE ALTYN TAGH FAULT:GEOLOGICAL EVIDENCE FROM FIELD OBSERVATIONS IN SOUERKULI AND MANGAR REGIONS, NW CHINAtheprogramsof (1)theYoungGeologistsFoundationoftheMGMR (No .Qn979812 ) ;(2 )“theNational (G19980 40 80 0 )and (3)openinglabora…  相似文献   

15.
RESEARCH PROGRESS OF ALTYN FAULT IN WESTERN CHINA   总被引:2,自引:0,他引:2  
RESEARCH PROGRESS OF ALTYN FAULT IN WESTERN CHINATheresearchisfundedbyNSFC (No.4 9772 157)  相似文献   

16.
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmenshan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xianshuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.  相似文献   

17.
藏南格仁错地区孜桂错断裂的第四纪活动及其构造意义   总被引:7,自引:4,他引:7  
因印度板块与欧亚板块碰撞,第四纪时青藏高原的拉萨地体内部出现一系列南北向的正断层,拉萨地体的北边界出现一系列近东西向的走滑断层.孜桂错活动断裂就是这些走滑断层中具有典型意义的一条,其活动表现为右行走滑,断裂切过河流、冲积扇、废弃的湖岸等,断裂的水平位移从10 m到375 m不等.它转换连接朋曲-申扎正断层和喀喇昆仑-嘉黎剪切带;同时,孜桂错断裂本身也是喀喇昆仑-嘉黎剪切带的重要组成部分.它的活动反映拉萨地体内部的东西向伸展以及羌塘地体相对拉萨地体的向东运动.  相似文献   

18.
郯庐断裂带的延伸与切割深度   总被引:24,自引:0,他引:24  
万天丰 《现代地质》1996,10(4):518-525
摘要:采用地质 地球化学 地球物理相结合的方法,系统研究了中生代以来郯庐断裂带的延伸长度与切割深度。250~208Ma期间,郯庐断裂带开始形成,延展长度不超过1500km,切割深度在15~20km,是以左行走滑活动为主的基底断裂。135~52Ma时期,该断裂带大幅度地扩展了长度(达3500km),切割深度在30~40km之间,为略具右行平移活动的正断层,属地壳断裂。233Ma以来,断裂带以向下深切为主,深度从50km左右逐渐加深到80~100km,终于形成岩石圈断裂  相似文献   

19.
阿尔泰山活动断裂   总被引:13,自引:0,他引:13  
沈军  李莹甄  汪一鹏  宋方敏 《地学前缘》2003,10(Z1):132-141
文中介绍了位于亚洲腹地阿尔泰山地区的活动断裂。中国阿尔泰山 (阿尔泰山西南麓 )和蒙古阿尔泰山 (阿尔泰山的东麓 )以NNW向大型走滑断裂为主 ,科布多断裂是阿尔泰山东麓的一条主要NNW向走滑断裂 ,长度近 70 0km。第四纪中晚期右旋走滑速率可达 6 10mm/a ,其上发现有长逾2 0 0km的古地震形变带。富蕴断裂则是阿尔泰山西南麓的一条主要NNW向断裂 ,中晚第四纪的走滑运动速率为 (4± 2 )mm/a ,在中国阿尔泰山的西端还发育规模相对较小的NNW向右旋走滑断裂 ,中晚第四纪走滑速率为 (2± 1)mm/a。中国阿尔泰山 (阿尔泰山的西南麓 )还发育NWW向右旋走滑逆断裂 ,其规模相对较小 ,至中国阿尔泰山西端NWW向的额尔齐斯断裂具有明显的右旋走滑性质。蒙古阿尔泰山的南端则发育近东西向的左旋走滑逆断裂。在与戈壁阿尔泰山交汇部位 ,左旋走滑运动具主导作用。戈壁阿尔泰山发育的戈壁阿尔泰断裂带断续延伸可达 10 0 0km以上 ,目前的研究认为 ,其滑动速率为 12mm/a。其中的博格德断裂上 195 7年发生了戈壁阿尔泰 8.3级地震 ,形变带长约 2 5 0km。阿尔泰山活动断裂的规模、运动强度和强地震活动表明这里不仅受到遥远的印度板块北向推挤作用的影响 ,而且受到较近的地球动力学过程的影响或控制。  相似文献   

20.
CHARACTERISTICS OF ALKALINE VOLCANIC ROCKS OF PLIOCENE IN THE WESTERN PART OF HONGHE FAULT ZONE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号