首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil mapping on the scale 1:50,000 was conducted in Tehri-Garhwal district of Uttar Pradesh using Survey of India Topographic maps and utilising aerial photographs of the area which were interpreted for demarcation of physiographic units, vegetation, drainage and other features relevant to soil development. Resulting soil map and soils and land use information have been helpful in presenting an optimum land use and management plan in the area keeping in view of the soils characteristics, terrain features and existing land use, Soils and physiographic interpretation in the area have highlighted significant soil-landscape relationships relevant to land utilization. The other factors responsible for soil formation which could be significant in the area i.e. climate and parent material were also taken into consideration apart from topography. Of all these factors topography was revealed to be the predominant factor governing soil formation in the area. Soil units mapped coincided with the physiographic units demarcated through aerial photo-interpretation. The area of the district could be divided into three climatic zones viz. (i) Cool temperate, (ii) Sub-tropical warm temperate and (iii) tropical following Kaushic (1962). It was noticed that in each climatic zone with the climate being almost uniform within the zone, irrespe tlve of variations in the parent material, soil development was markedly affected by topographly, variations which led to differences in soil characteristics particulary soil texture and amount of coarse fragments. In about 70 percent of the area of the district where slopes are steep to very steep, topography was revealed to be the dominant factor determining characteristic soil development. In the remaining part where slopes are moderate to gentle, parent material is the dominant factor followed by topography.  相似文献   

2.
Evaluation and mapping of spatial variations of land productivity is very important for effective landuse planning. The present study was undertaken in watershed of the Song river (Dehra Dun district, U.P.), for assessing and mapping land productivity using modified Storie Index following integrated approach. This approach utilizes soilscape information (derived from digital IRS-IA LISS-II data), soil characteristics (field observed and laboratory analysed) and terrain slope information (obtained from Survey of India topographical maps). The approach consists of preparation of Storie Index productivity rating factors such as: A (soil profile character), B (soil texture), X (soil physical and fertility conditions), and C (land slope), and computerised integration of these maps to generate land productivity map. The results indicate that in the watershed 30.6%, 19.6%, 12.2%, 11.8% and 18.8% areas have been found to be under good, fair, poor, very poor and not suitable, land productivity classes, respectively.  相似文献   

3.
Improving image classification and its techniques have been of interest while handling satellite data especially in hilly regions with evergreen forests particularly with indistinct ecotones. In the present study an attempt has been made to classify evergreen forests/vegetation in Moulirig National Park of Arunachal Pradesh in Eastern Himalayas using conventional unsupervised classification algorithms in conjunction with DEM. The study area represents climax vegetation and can be broadly classified into tropical, subtropical, temperate and sub-alpine forests. Vegetation pattern in the study area is influenced strongly by altitude, slope, aspect and other climatic factors. The forests are mature, undisturbed and intermixed with close canopy. Rugged terrain and elevation also affect the reflectance. Because of these discrimination among the various forest/vegetation types is restrained on satellite data. Therefore, satellite data in optical region have limitations in pattern recognition due to similarity in spectral response caused by several factors. Since vegetation is controlled by elevation among other factors, digital elevation model (DEM) was integrated with the LISS III multiband data. The overall accuracy improved from 40.81 to 83.67%. Maximum-forested area (252.80 km2) in national park is covered by sub-tropical evergreen forest followed by temperate broad-leaved forest (147.09 km2). This is probably first attempt where detailed survey of remote and inhospitable areas of Semang sub-watershed, in and around western part of Mouling Peak and adjacent areas above Bomdo-Egum and Ramsingh from eastern and southern side have been accessed for detailed ground truth collection for vegetation mapping (on 1:50,000 scale) and characterization. The occurrence of temperate conifer forests and Rhododendron Scrub in this region is reported here for the first time. The approach of DEM integrated with satellite data can be useful for vegetation and land cover mapping in rugged terrains like in Himalayas.  相似文献   

4.

Forest vegetation of Vindhyan range located in the north of G.B. Pant Sagar (dam) has been subjected to degradation due to high biotic pressure caused by the installation of thermal power plants, coal mining, heavy cattle grazing etc. In the present study Landsat TM FCC of 1∶250,000 scale was visually analysed with respect to forest vegetation types, crown density and structure along with other landuse/land cover classes. ExceptShorea robusta (Sal) andLagerstroemia parviflora (Lendia) all forest vegetation types show higher percentage of degradation and under-stocked condition with respect to their areal extent under study. Overall classification accuracy of the forest types has been found to be 88.94%. This indicates that for obtaining reliable mapping accuracy in dry deciduous areas, satellite remote sensing data of appropriate season is essential.

  相似文献   

5.
The homegardens represent an important component of the trees outside forests (TOF) in the rural ecosystem which fulfill a range of subsistence and economic needs besides providing many environmental services. The present work was focused on the identification and mapping of rural homegardens as a component of the trees outside forests in the larger landscape of the three districts—Cachar, Hailakandi and Karimganj, of Barak Valley, Assam, northeast India. Mapping and identification of homegardens and other dominant land use/land cover classes was done with IRS-P6 LISS-IV data using on-screen visual interpretation technique in a geographic information system environment. Two major TOF classes could be identified from the satellite data and homegardens were found to be the dominant TOF class with the highest percentage coverage of the total geographical area in the three districts. The study reveals that high resolution satellite data of IRS-P6 LISS-IV can be successfully used for classification and mapping of different land use/land cover classes including the homegardens with an overall classification accuracy of 91 %. The land use/land cover map generated for the three districts shows the distribution of the homegardens in relation to other land use/land cover classes and can be used in future for proper identification of homegardens and resource management planning.  相似文献   

6.
A spectral linear-mixing model using Landsat ETM+ imagery was undertaken to estimate fraction images of green vegetation, soil and shade in an indigenous land area in the state of Mato Grosso in the central-western region of Brazil. The fraction images were used to classify different types of land use and vegetation cover. The fraction images were classified by the following two methods: (a) application of a segmentation based on the region-growing technique; and (b) grouping of the regions segmented using the per-region unsupervised classifier named ISOSEG. Adopting a 75% threshold, ISOSEG generated 44 clusters that were grouped into eight land-use and vegetation-cover classes. The mapping achieved an average accuracy of 83%, showing that the methodology is efficient in mapping areas of great land-use and vegetation-cover diversity, such as that found in the Brazilian cerrado (savanna).  相似文献   

7.
The present study was aimed to identify and delineate the groundwater potential areas in parts of Western Ghats, Kottayam, covering the upper catchment of Meenachil river. The study area is composed rocks of Archaean age and Charnockite dominated over others. The information on lithology, geomorphology, lineaments, slope and land use/land cover was generated using the Resourcesat (IRS P6 LISS III) data and Survey of India (Sol) toposheets of scale 1:50,000 (surveyed in 1969) and integrated them with raster based Geographical Information System (GIS) to identify the groundwater potential of the study area. Thus, a GIS-based model which takes account of local condition/variations has been developed specifically for mapping groundwater potential. On the basis of hydrogeomorphology, three categories of groundwater potential zones namely good, moderate and poor were identified, and delineated. The high potential zones correspond to the fracture valleys, valley fills, pediments and denudational slope, which coincide with the low slope and high lineaments density areas. The low zone mainly comprise structural hills and escarpments and these act as run-off zones. The derived panchayath-wise groundwater potentiality information could be used for effective identification of suitable locations for extraction of potable water for rural populations.  相似文献   

8.
Invasive species have been the focus of environmentalists due to their undesired impact on the ecosystem. Spread of Lantana (Lantana camara L.), an invasive plant species, has been found in diverse geophysical environments causing a threat to the native flora. Various eradication programmes have been attempted such as burning, chemical sprays, bio-control agents and physical plugging mechanism for removing such invasive species in India. The efforts and success of these programmes need to be augmented with a correct, quick and cost effective technique of mapping in order to locate them, understand their spatial extent and hence make the process comprehensive. Also Lantana’s appearance as dense vegetation patches in remote sensing data causes problems for estimating forest canopy density. Remote sensing provides a possible solution in qualitatively and quantitatively evaluating terrestrial surface vegetation cover using spectral measure-ments. This research paper addresses issues and techniques adopted to detect and extract Lantana, and can be used for various applications in forestry as well as in eradication programmes. This study attempted to understand the appropriate band combination using Landsat data and generating vegetation indices in order to extract Lantana patches in an accurate manner. Twenty nine different vegetation indices were analyzed for their effectiveness in differentiating Lantana from other classes. The study showed that SAVI (Soil Adjusted Vegetation Index) is most favorable in discriminating Lantana followed by Perpendicular Vegetation Index-3 in the optimum bio-window (February to April).  相似文献   

9.
Abstract

Currently, many soil erosion studies at local, regional, national or continental scale use models based on the USLE-family approaches. Applications of these models pay little attention to seasonal changes, despite evidence in the literature which suggests that erosion risk may change rapidly according to intra-annual rainfall figures and vegetation phenology. This paper emphasises the aspect of seasonality in soil erosion mapping by using month-step rainfall erosivity data and biophysical time series data derived from remote-sensing. The latter, together with other existing pan-European geo-databases sets the basis for a functional pan-European service for soil erosion monitoring at a scale of 1:500,000. This potential service has led to the establishment of a new modelling approach (called the G2 model) based on the inheritance of USLE-family models. The G2 model proposes innovative techniques for the estimation of vegetation and protection factors. The model has been applied in a 14,500 km2 study area in SE Europe covering a major part of the basin of the cross-border river, Strymonas. Model results were verified with erosion and sedimentation figures from previous research. The study confirmed that monthly erosion mapping would identify the critical months and would allow erosion figures to be linked to specific land uses.  相似文献   

10.
Until recently, land surveys and digital interpretation of remotely sensed imagery have been used to generate land use inventories. These techniques however, are often cumbersome and costly, allocating large amounts of technical and temporal costs. The technological advances of web 2.0 have brought a wide array of technological achievements, stimulating the participatory role in collaborative and crowd sourced mapping products. This has been fostered by GPS-enabled devices, and accessible tools that enable visual interpretation of high resolution satellite images/air photos provided in collaborative mapping projects. Such technologies offer an integrative approach to geography by means of promoting public participation and allowing accurate assessment and classification of land use as well as geographical features. OpenStreetMap (OSM) has supported the evolution of such techniques, contributing to the existence of a large inventory of spatial land use information. This paper explores the introduction of this novel participatory phenomenon for land use classification in Europe's metropolitan regions. We adopt a positivistic approach to assess comparatively the accuracy of these contributions of OSM for land use classifications in seven large European metropolitan regions. Thematic accuracy and degree of completeness of OSM data was compared to available Global Monitoring for Environment and Security Urban Atlas (GMESUA) datasets for the chosen metropolises. We further extend our findings of land use within a novel framework for geography, justifying that volunteered geographic information (VGI) sources are of great benefit for land use mapping depending on location and degree of VGI dynamism and offer a great alternative to traditional mapping techniques for metropolitan regions throughout Europe. Evaluation of several land use types at the local level suggests that a number of OSM classes (such as anthropogenic land use, agricultural and some natural environment classes) are viable alternatives for land use classification. These classes are highly accurate and can be integrated into planning decisions for stakeholders and policymakers.  相似文献   

11.
全球土地覆盖制图在过去的10年中取得重要进展,空间分辨率从300 m增加至30 m,分类详细程度也有所提高,从10余个一级类到包含29类的二级分类体系。然而,利用光学遥感数据在大空间范围制图方面仍有诸多挑战。本文主要介绍在农田、居住区、水体和湿地制图方面的挑战,讨论在使用多时相和多传感器遥感数据上的困难,这将是未来遥感应用的趋势。由于各种地表覆盖数据产品有自己定义的地表覆盖类型体系和处理流程,通过调和以及集成各种全球土地覆盖制图产品能够满足新的应用目的,并且可以最大程度地利用已有的土地覆盖数据。然而,未来全球土地覆盖制图需要能够按照新应用需求动态生成地表覆盖数据产品的能力。过去的研究表明有效地提高局部尺度制图的分类精度,更好的算法、更多种特征变量(新类型的数据或特征)以及更具代表性的训练样本都非常重要。我们却认为特征变量的使用更重要。本文提出了一个全球土地覆盖制图的新范式。在这个新范式中,地表覆盖类型的定义被分解为定性指标的类、定量指标的植被郁闭度和高度。非植被类型通过它们的光谱和纹理信息提取。复合考虑类、郁闭度和高度3种指标来定义和区别包含植被的地表覆盖类型。郁闭度和高度不能在分类算法中提取,需要借助其他直接测量或间接反演方法。新的范式还表明,一个普遍适用的训练样本集有效地提高了在非洲大陆尺度土地覆盖分类。为了确保更加容易地实现从传统的土地覆盖制图到全球土地覆盖制图新范式的转变,建议构建一体化的数据管理和分析系统。通过集成相关的观测数据、样本数据和分析算法,逐步建成全球土地覆盖制图在线系统,构建全球地表覆盖制图门户网站,为数据生产者、数据用户、专业研究人员、决策人员搭建合作互助的平台。  相似文献   

12.
Population growth worldwide leads to an increasing pressure on the land. Recent studies reported that many areas covered by badlands are decreasing because parts of badlands are being levelled and converted into arable land. It is important to monitor these changes for environmental planning. This paper proposes a remote-sensing-based detection method which allows mapping of badland dynamics based on seasonal vegetation changes in the lower Chambal valley, India. Supervised classification was applied on three Landsat (Thematic Mapper) images, from 3 different seasons; January (winter), April (summer) and October (post-monsoon). Different band selection methods were applied to get the best classification. Validation was done by ground referencing and a GeoEye-1 satellite image. The image from January performed best with overall accuracy of 87% and 0.69 of kappa. This method opens the possibilities of using semi-automatic classification for the Chambal badlands which is so far mapped with manual interpretations only.  相似文献   

13.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.  相似文献   

14.
Here an attempt has been made to highlight the importance of satellite remote sensing in land system mapping, land resources inventory and land use planning of a sample river basin (in Arunachal Pradesh) covering an area of 10,186 sq. km. The (Kemang) river basin has been divided intofour land systems viz : structural, denudational, piedmont and fluvial. Each system has been analysed with respect toeight land water-land use (resource) parameters for proper land use and environmental management of the river basin. A tentative‘productivity/development strategy ranking’ is also given for optimum planning of the basin.  相似文献   

15.
The problems and impact of gully erosion along the Atbara River (Sudan), situated in semi-arid and arid environments, were investigated. The total gross area of gullied land and the loss of arable land by gully erosion were estimated. Multi-date sets of panchromatic aerial photographs and Landsat images (TM) were selected to represent two sites in the arid (New Halfa) and semi-arid (Showak town) zones along the Atbara River. Photo interpretation was conducted using physiographic and element methods. The interpretations detected the effects of water action in different climatic zones on geology, lithology, vegetation and land use. The results showed that the traditional rainfed agriculture has accelerated gully erosion in the semi-arid rather than in the arid zone. The progressive rate of gully erosion in the semi-arid zone resulted in loss of arable land at about 13.4 km2 yr-1 and 9.8 km2 yr-1 in the periods 1985–1987 and 1987–1990, respectively. The study provided data on the monitoring and mapping of gully erosion along the Atbara River and its tributaries.  相似文献   

16.
The present study highlights the application of satellite remote sensing in the assessment and monitoring of the mangrove forests along the coastline in Goa state of India. Based on onscreen visual interpretation techniques various land use and land cover classes have been mapped and classified. An attempt has been made to analyse changes in the mangrove forest cover from 1994 to 2001 using IRS-1B LISS-II and IRS-1D LISS-III data. An increase in the mangrove vegetation in the important estuaries has been found during 1994 and 2001. During this period, the mangrove forest increased by 44.90 per cent as a result of increased protection and consequent regeneration. Plantation of mangrove species has been raised in 876 ha (1985 to 1997) by the State Forest Department¨  相似文献   

17.
Abstract

River basin assessment is crucial for water management and to address the watershed issues. So, an integrated river basin management and assessment model using morphometric assessment, remote sensing, GIS and SWAT model was envisaged and applied to Kaddam river basin, Telangana state, India. Morphometric results showed high drainage density ranging from 2.19 to 5.5?km2/km, with elongated fan shape having elongation ratio of 0.60–0.75 with sparse vegetation and high relief. Land use change assessment showed that 265.26?km2 of forest land is converted into irrigated land and has increased sediment yields in watersheds. The calibration (r 2?=?0.74, NSE?=?0.84) and validation (r 2?=?0.72, NSE?=?0.84) of SWAT model showed that simulated and observed results were in agreement and in recommended ranges. The SWAT simulations were used to compute mean annual water and sediment yield from 1997 to 2012, along with morphometric results to categorize critical watersheds and conservation structures were proposed accordingly.  相似文献   

18.
The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from coarse-resolution (GLC2000) and high-resolution imagery (Africover).  相似文献   

19.
结合Landsat-8遥感数据,采用多级决策树分类方案,利用归一化植被指数、波段比值、主成分分量等光谱特征参数并融合其他非遥感知识,对黄河三角洲地区土地利用与覆盖的信息展开了全面的提取、研究与分析,获得了该地区5个一级类、12个二级类地物的分布情况,分类总体精度93.88%,优于传统监督分类。同时采用聚类、分类叠加和人机交互等分类后处理操作以获得更贴近地面实际的制图效果,开展基于海岸线的缓冲区分析以获得各地物特别是距离海岸线10 km、20 km范围内地物类型的空间分布并完成相关制图与分析,为黄河三角洲地区滨海土地的利用与开发提供了数据支持。  相似文献   

20.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号