首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

2.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   

3.
The Hokko prospect is located in the Minamikayabe area southwestern Hokkaido, Japan, where gold-bearing quartz veins of Pliocene age are exposed at the surface. The alteration mineral assemblage is typical of low-sulfidation epithermal systems, with the quartz veins associated with adularia alteration overprinted on Late Miocene propylitic alteration. Fluid inclusion studies of the vein quartz reveal mean homogenization temperatures of approximately 220 °C, and the co-existence of low-salinity (<2 wt.% NaCl equivalent) and moderate salinity (2 to 12 wt.% NaCl equivalent) fluid inclusions within the same veins. The moderate salinity fluid inclusions (2–12 wt.% NaCl equivalent) typically have relatively low homogenization temperatures between 150° to 200 °C. The results obtained from stable isotope analysis of  δ18O in quartz vein material showed a gradual decrease in  δ18O signatures with increasing depth. The majority of the samples have calculated fluid source signatures (δ18OH2O) between −8.0 and −10.0‰, but there is a significant change in the composition above 185 m drill depth. The shallower samples in particular show a wide range of oxygen isotope signatures that are associated with the moderate salinity fluid inclusions. We interpret that low-salinity inclusions within the Hokko system represent the composition of the liquid phase of the fluid, before boiling, and that the moderate-salinity inclusions are representative of the residual liquid phase, after extensive non-adiabatic boiling and vapor loss in an open system. This mechanism resulted in the entrapment of fluids with variable salinities at the same time, and in close proximity to each other. This is also reflected in the  δ18OH2O values which become more variable and heavier where the moderate-salinity inclusions occur. Deposition of ore minerals within the Hokko vein system also occurred at this time as a result of boiling and gas loss. Received: 30 May 1997 / Accepted: 6 January 1998  相似文献   

4.
Scheelite mineralization accompanied by muscovite and albite, and traces of Mo-stolzite and stolzite occurs in epigenetic quartz vein systems hosted by two-mica gneissic schists, and locally amphibolites, of the Paleozoic or older Vertiskos Formation, in the Metaggitsi area, central Chalkidiki, N Greece. Three types of primary fluid inclusions coexist in quartz and scheelite: type 1, the most abundant, consists of mixed H2O-CO2 inclusions with highly variable (20–90 vol.%) CO2 contents and salinities between 0.2 and 8.3 equivalent weight % NaCl. Densities range from 0.79 to 0.99 g/cc; type 1 inclusions contain also traces (<2 mol%) of CH4. Type 2 inclusions are nearly 100 vol.% liquid CO2, with traces of CH4, and densities between 0.75 and 0.88 g/cc. Type 3 inclusions, the least abundant, contain an aqueous liquid of low salinity (0.5 to 8.5 equivalent weight% NaCl) with 10–30 vol.% H2O gas infrequently containing also small amounts of CO2 (<2 mol%); densities range from 0.72 to 0.99 g/cc. The wide range of coexisting fluid inclusion compositions is interpreted as a result of fluid immiscibility during entrapment. Immiscibility is documented by the partitioning of CH4 and CO2, into gas-rich (CO2-rich) type 1 inclusions, and the conformity of end-member compositions trapped in type 1 inclusions to chemical equilibrium fractionation at the minimum measured homogenization temperatures, and calculated homogenization pressures. Minimum measured homogenization temperatures of aqueous and gas-rich type 1 inclusions of 220°–250 °C, either to the H2O, or to the CO2 phase, is considered the best estimate of temperature of formation of the veins, and temperature of scheelite deposition. Corresponding fluid pressures were between 1.2 and 2.6 kbar. Oxygen fugacities during mineralization varied from 10−35 to 10−31 bar and were slightly above the synthetic Ni-NiO buffer values. The fluid inclusion data combined with δ18O water values of 3 to 6 per mil (SMOW) and δ13C CO2− fluid of −1.2 to +4.3 per mil (PDB), together with geologic data, indicate generation of mineralizing fluids primarily by late- to post-metamorphic devolatilization reactions. Received: 8 April 1997 / Accepted: 8 July 1997  相似文献   

5.
The Géant Dormant gold mine is a sulfide-rich quartz vein gold deposit hosted by a volcano-sedimentary sequence and an associated felsic endogenous dome and dikes. The auriferous quartz-sulfide veins were preceded by two synvolcanic gold-bearing mineralizing events: early sulfidic seafloor-related and later disseminated pyrite in the felsic dome. This deposit differs from classical Archean auriferous quartz vein deposits by the low carbonate and high sulfide contents of the veins and by their formation prior to ductile penetrative deformation. The δ18O values of quartz associated with seafloor-related auriferous sulfides average 11.9 ± 0.6‰ (n = 3). The seafloor hydrothermal fluids had a δ18O value of 3.2‰ calculated at 250 °C. The oxygen isotope composition of quartz and chlorite from veins average 12.5 ± 0.3‰ (n = 20) and 5.9 ± 1.1‰ (n = 4) respectively. Assuming oxygen isotope equilibrium between quartz and chlorite, the veins formed at a temperature of ∼275 °C, which is consistent with the calculated temperature of 269 ± 10 °C from chlorite chemistry. The gold-bearing fluids had a δ18O value of 4.7‰ calculated at 275 °C. The δ34S values of sulfides from the three gold events range from 0.6 to 2.8‰ (n = 32) and are close to magmatic values. Sulfur isotope geothermometry constrains the sulfide precipitation in the gold-bearing veins at a temperature of ∼350 °C. The similarity of the isotope data, the calculated δ18O of the mineralizing fluids and the likely seawater fluid source suggest that the three mineralizing events are genetically related to a volcanogenic hydrothermal system. The high value of the auriferous fluids (δ18O = 4.7‰) is attributed to a significant magmatic fluid contribution to the evolved seawater-dominated convective hydrothermal system. The two-stage filling of veins at increasing temperature from quartz-chlorite (275 °C) to sulfides (350 °C) may reflect the progressive maturation of volcanogenic hydrothermal systems. These results, together with field and geochemical data, suggest that formation of gold-rich volcanogenic systems require specific conditions that comprise a magmatic fluid contribution and gold from arc-related felsic rocks, coeval with the mineralizing events. This study shows that some auriferous quartz-vein orebodies in Archean terranes are formed in volcanogenic rather than mesothermal systems. Received: 12 December 1998 / Accepted: 5 July 1999  相似文献   

6.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

7.
The Zálesí vein-type deposit is hosted by Early Paleozoic high-grade metamorphic rocks on the northern margin of the Bohemian Massif. The mineralization is composed of three main stages: uraninite, arsenide, and sulfide. The mineral assemblages formed at low temperatures (~80 to 130°C, locally even lower) and low pressures (<100 bars). The salinity of the aqueous hydrothermal fluids (0 to 27 wt.% salts) and their chemical composition vary significantly. Early fluids of the oldest uraninite stage contain a small admixture of a clathrate-forming gas, possibly CO2. Salinity correlates with oxygen isotope signature of the fluid and suggests mixing of brines [δ 18O around +2‰ relative to standard mean ocean water (SMOW)] with meteoric waters (δ 18O around −4‰ SMOW). The fluid is characterized by highly variable halogen ratios (molar Br/Cl = 0.8 × 10−3 to 5.3 × 10−3; molar I/Cl = 5.7 × 10−6 to 891 × 10−6) indicating a dominantly external origin for the brines, i.e., from evaporated seawater, which mixed with iodine-enriched halite dissolution brine. The cationic composition of these fluids indicates extensive interaction of the initial brines with their country rocks, likely associated with leaching of sulfur, carbon, and metals. The brines possibly originated from Permian–Triassic evaporites in the neighboring Polish Basin, infiltrated into the basement during post-Variscan extension and were finally expelled along faults giving rise to the vein-type mineralization. Cenozoic reactivation by low-salinity, low-δ 18O (around −10‰ SMOW) fluids of mainly meteoric origin resulted in partial replacement of primary uraninite by coffinite-like mineral aggregates.  相似文献   

8.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

9.
Scheelite-mineralized microtonalite sheets occur on the SE margin of the end-Caledonian Leinster Granite in SE Ireland. Scheelite, polymetallic sulphides and minor cassiterite occur in veins in the microtonalites, disseminated throughout the greisened microtonalite sheets and in the adjacent wallrocks. Two major mineralized vein types occur in the microtonalite sheets: (1) Scheelite ± arsenopyrite ± pyrrhotite occur in quartz-fluorite veins, generally without a muscovite selvage; (2) Sphalerite ± chalcopyrite ± pyrite ± galena ± cassiterite ± stannite occur in quartz + fluorite veins with a coarse muscovite selvage and are often intergrown with the muscovite. Quartz-hosted fluid inclusions were examined from representative samples of both vein types using petrographic, microthermometric and laser Raman spectroscopic techniques. Three distinct types of fluid inclusions have been recognized. Primary, vapour rich Type 1 inclusions in quartz from the scheelite-mineralized veins are of H2O-CO2-CH4-N2 ± H2S ± NaCl composition and formed between 360–530 °C. Primary and secondary, liquid-rich Type 2 fluid inclusions in the base metal sulphide-mineralized veins are of H2O-CH4-N2 ± H2S-NaCl composition and formed between 340–480 °C. They also occur as pseudosecondary and secondary inclusions in scheelite-mineralized veins. Late dilute, low temperature H2O-NaCl + KCl fluid inclusions may be related to late-Caledonian convection of meteoric waters around the cooling Leinster Granite batholith. Received: 4 September 1996 / Accepted: 23 May 1997  相似文献   

10.
Oxygen isotopic composition of emerald from 62 occurrences and deposits in the world reveals a wide range in δ18O (SMOW) between +6.2 and +24.7‰. The δ18O-values for each deposit are restricted and can be used to determine the origin of emerald from the world's most important producers. The δ18O-value of emerald appears to be a fingerprint of its origin, especially for gems of exceptional quality from Colombia (eastern emerald zone, δ18O = +16.8 ± 0.1‰; western emerald zone, δ18O = +21.2 ± 0.5‰), Afghanistan (δ18O = +13.5 ± 0.1‰), Pakistan (Swat-Mingora districts, δ18O = +15.7 ± 0.1‰), Brazil (Santa Terezinha de Goiás, δ18O = +12.2 ± 0.1‰; Quadrilatero Ferrifero, δ18O = +6.9 ± 0.4‰) and Zimbabwe (Sandawana, δ18O = +7.5 ± 0.5‰). Furthermore, the 18O-composition of emerald appears to be a good marker of its geological environment because the data suggest that host-rock-buffering of fluid δ18O is considerable during fluid-rock interaction. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

11.
 Infiltration of a metabasite sill from Islay, Scotland by an H2O-CO2 fluid caused (1) modification of δ18O and (2) carbonation at the sill margins. Maps of δ18O and reaction progress were constructed from a 20 × 47.7 metre sample grid across the sill. The grid consisted of 300 samples, spaced at m, dm and cm intervals, many of which were analysed for both δ18O and reaction progress. The δ18O was determined by laser fluorination of whole rock silicate powders and reaction progress was determined by rapid field-based measurement of % calcite (“fizz-o-meter”, Skelton et al. 1995). Reaction and isotope fronts outlined tube-like features that emanate from the sill margin and discrete nodes that, although detached from the sill margin in two dimensions, are thought to represent sections through similar tubes in three dimensions. We envisage that these protrusions are the fossil record of metamorphic “fluid pathways” whereby fluid permeated the sill. Isotope and reaction fronts are found to correlate spatially as predicted by a modified form of the chromatographic equation which describes this envisaged geometry, that is where isotopic and reactive transport in the fluid phase are facilitated by advection along specific fluid pathways and transverse diffusion in the surrounding rock. These fluid pathways consist of bundles of anastomosing grain boundary channels or micro-cracks, which are thought to propagate through transient cyclic infiltration, reaction, porosity enhancement and fracturing. This mechanism is self-perpetuating and accentuates random perturbations at the sill margin to form the observed tubes. We argue that this is the earliest stage of the infiltration process which has affected metabasites of the SW Scottish Highlands and that subsequent shear deformation of the reacted rims of these pathways, has caused their re-orientation and juxtaposition to form the reacted sill margins described by Skelton et al. (1995). Received: 17 February 1998 / Accepted: 6 December 1999  相似文献   

12.
A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au–(Bi–Sb–Cu–Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded (P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1–2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280–340°C. In contrast, type 2 is a high-salinity (20–25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160–200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = −44‰ to−54‰; and (3) δ34Saspy = +7.8‰ to +10.3‰. These data are interpreted, in conjunction with fluid inclusion data, to reflect contamination of a magmatic-derived fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≤ +10‰) by an external fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≥ +15‰), the latter having equilibrated with the surrounding metasedimentary rocks. The δ34S data are inconsistent with a direct igneous source based on other studies for the host intrusion (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  = +5‰) and are, instead, consistent with an external reservoir for sulphur based on δ34SH2S data for the surrounding metasedimentary rocks. Divergent fluid reservoirs are also supported by analyses of Pb isotopes for pegmatitic K-feldspar and vein arsenopyrite. Collectively the data indicate that the vein- and greisen-forming fluids had a complex origin and reflect both magmatic and non-magmatic reservoirs. Thus, although the geological setting suggests a magmatic origin, the geochemical data indicate involvement of multiple reservoirs. These results suggest multiple reservoirs for this intrusion-related gold deposit setting and caution against interpreting the genesis of intrusion-related gold deposit mineralization in somewhat analogous settings based on a limited geochemical data set.  相似文献   

13.
The Eastern Iberian Central System has abundant ore showings hosted by a wide variety of hydrothermal rocks; they include Sn-W, Fe and Zn-(W) calcic and magnesian skarns, shear zone- and episyenite-hosted Cu-Zn-Sn-W orebodies, Cu-W-Sn greisens and W-(Sn), base metal and fluorite-barite veins. Systematic dating and fluid inclusion studies show that they can be grouped into several hydrothermal episodes related with the waning Variscan orogeny. The first event was at about 295 Ma followed by younger pulses associated with Early Alpine rifting and extension and dated near 277, 150 and 100 to 20 Ma, respectively (events II–IV). The δ18O-δD and δ34S studies of hydrothermal rocks have elucidated the hydrological evolution of these systems. The event I fluids are of mixed origin. They are metamorphic fluids (H2O-CO2-CH4-NaCl; δ18O=4.7 to 9.3‰; δD ab.−34‰) related to W-(Sn) veins and modified meteoric waters in the deep magnesian Sn-W skarns (H2O-NaCl, 4.5–6.4 wt% NaCl eq.; δ18O=7.3–7.8‰; δD=−77 to −74‰) and epizonal shallow calcic Zn-(W) and Fe skarns (H2O-NaCl, <8 wt% NaCl eq.; δ18O=−0.4 to 3.4‰; δD=−75 to −58‰). They were probably formed by local hydrothermal cells that were spatially and temporally related to the youngest Variscan granites, the metals precipitating by fluid unmixing and fluid-rock reactions. The minor influence of magmatic fluids confirms that the intrusion of these granites was essentially water-undersaturated, as most of the hydrothermal fluids were external to the igneous rocks. The fluids involved in the younger hydrothermal systems (events II–III) are very similar. The waters involved in the formation of episyenites, chlorite-rich greisens, retrograde skarns and phyllic and chlorite-rich alterations in the shear zones show no major chemical or isotopic differences. Interaction of the hydrothermal fluids with the host rocks was the main mechanism of ore formation. The composition (H2O-NaCl fluids with original salinities below 6.2 wt% NaCl eq.) and the δ18O (−4.6 to 6.3‰) and δD (−51 to −40‰) values are consistent with a meteoric origin, with a δ18O-shift caused by the interaction with the, mostly igneous, host rocks. These fluids circulated within regional-scale convective cells and were then channelled along major crustal discontinuities. In these shear zones the more easily altered minerals such as feldspars, actinolite and chlorite had their δ18O signatures overprinted by low temperature younger events while the quartz inherited the original signature. In the shallower portions of the hydrothermal systems, basement-cover fluorite-barite-base metal veins formed by mixing of these deep fluids with downwards percolating brines. These brines are also interpreted as of meteoric origin (δ18O< ≈ −4‰; δD=−65 to −36‰) that leached the solutes (salinity >14 wt% NaCl eq.) from evaporites hosted in the post-Variscan sequence. The δD values are very similar to most of those recorded by Kelly and Rye in Panasqueira and confirm that the Upper Paleozoic meteoric waters in central Iberia had very negative δD values (≤−52‰) whereas those of Early Mesozoic age ranged between −65 and −36‰. Received: 9 June 1999 / Accepted: 19 January 2000  相似文献   

14.
Isotope geochemistry and fluid inclusion study of skarns from Vesuvius   总被引:3,自引:0,他引:3  
Summary We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes “fassaitic” clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000–1050 °C), b) CO2 ± H2S-rich fluid inclusions (THOM = 20–31.3 °C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720–820 °C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870–890 °C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt – aqueous chloride-rich liquid – carbonate/sulfate melt?) during heating and cooling below 870 °C. There is no evidence for fluid circulation below 700 °C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047–19.202), 207Pb/204Pb (15.655–15.670), and 208Pb/204Pb (38.915–39.069) and relatively low 143Nd/144Nd (0.51211–0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (δ13CV-PDB = −5.4 to −1.1‰; δ18OV-SMOW = 11.7 to 16.4‰) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5 km) and consequent exsolution of CO2-rich vapor and complex saline melts from the contaminated magma that reacted with the carbonate rocks to form skarns. Received March 1, 2000; revised version accepted November 2, 2000  相似文献   

15.
The Pering deposit is the prime example of Zn–Pb mineralisation hosted by stromatolitic dolostones of the Neoarchean to Paleoproterozoic Transvaal Supergroup. The hydrothermal deposit centers on subvertical breccia pipes that crosscut stromatolitic dolostones of the Reivilo Formation, the lowermost portion of the Campbellrand Subgroup. Four distinct stages of hydrothermal mineralisation are recognised. Early pyritic rock matrix brecciation is followed by collomorphous sphalerite mineralisation with replacive character, which, in turn, is succeeded by coarse grained open-space-infill of sphalerite, galena, sparry dolomite, and quartz. Together, the latter two stages account for ore-grade Zn–Pb mineralisation. The fourth and final paragenetic stage is characterised by open-space-infill by coarse sparry calcite. The present study documents the results of a detailed geochemical study of the Pering deposit, including fluid inclusion microthermometry, fluid chemistry and stable isotope geochemistry of sulphides (δ34S) and carbonate gangue (δ13C and δ18O). Microthermometric fluid inclusion studies carried out on a series of coarsely grained crystalline quartz and sphalerite samples of the latter, open-space-infill stage of the main mineralisation event reveal the presence of three major fluid types: (1) a halite–saturated aqueous fluid H2O–NaCl–CaCl2 (>33 wt% NaCl equivalent) brine, (2) low-salinity meteoric fluid (<7 wt% NaCl) and (3) a carbonic CH4–CO2–HS fluid that may be derived from organic material present within the host dolostone. Mixing of these fluids have given rise to variable mixtures (H2O–CaCl2–NaCl ±(CH4–CO2–HS), 2 to 25 wt% NaCl+CaCl2). Heterogeneous trapping of the aqueous and carbonic fluids occurred under conditions of immiscibility. Fluid temperature and pressure conditions during mineralisation are determined to be 200–210°C and 1.1–1.4 kbar, corresponding to a depth of mineralisation of 4.1–5.2 km. Chemical analyses of the brine inclusions show them to be dominated by Na and Cl with lesser amounts of Ca, K and SO4. Fluid ratios of Cl/Br indicate that they originated as halite saturated seawater brines that mixed with lower salinity fluids. Analyses of individual brine inclusions document high concentrations of Zn and Pb (∼1,500 and ∼200 ppm respectively) and identify the brine as responsible for the introduction of base metals. Stable isotope data were acquired for host rock and hydrothermal carbonates (dolomite, calcite) and sulphides (pyrite, sphalerite, galena and chalcopyrite). The ore-forming sulphides show a trend to 34S enrichment from pyrite nodules in the pyritic rock matrix breccia (δ34S = −9.9 to +3.7‰) to paragenetically late chalcopyrite of the main mineralisation event (δ34S = +30.0‰). The observed trend is attributed to Rayleigh fractionation during the complete reduction of sulphate in a restricted reservoir by thermochemical sulphate reduction, and incremental precipitation of the generated sulphide. The initial sulphate reservoir is expected to have had an isotopic signature around 0‰, and may well represent magmatic sulphur, oxidised and leached by the metal-bearing brine. The δ18O values of successive generations of dolomite, from host dolostone to paragenetically late saddle dolomite follow a consistent trend that yields convincing evidence for extensive water rock interaction at variable fluid–rock ratios. Values of δ13C remain virtually unchanged and similar to the host dolostone, thus suggesting insignificant influx of CO2 during the early and main stages of mineralisation. On the other hand, δ13C and δ18O of post-ore calcite define two distinct clusters that may be attributed to changes in the relative abundance in CH4 and CO2 during waning stages of hydrothermal fluid flow.  相似文献   

16.
Whole rock oxygen isotope data are presented for the Panorama district, in the Archean Pilbara Craton of Western Australia, where near-perfect exposure reveals a cross section through a complete volcanogenic massive sulfide (VMS) hydrothermal alteration system. The δ18O values decrease with depth in the volcanic pile, across semi-conformable alteration zones, to values below 6‰ immediately above a large (180 km2) subvolcanic intrusion. Altered rocks in the upper parts of the subvolcanic intrusion have lower δ18O values (6–8‰) than least altered granite (8‰), apart from sericite–quartz altered zones, which are slightly higher (8–10‰). Corridors of low δ18O values crosscut this regional zonation, and are coincident with transgressive feldspar-destructive alteration zones, which underlie VMS mineralization. The whole rock oxygen isotope distribution patterns are interpreted to represent alteration temperature, where high δ18O values correspond to low temperature alteration and low δ18O values correspond to high temperature alteration. Alteration temperatures, which were calculated using modal alteration mineral abundances and an assumed fluid δ18O, are consistent with this interpretation. Increasing temperatures with depth in the volcanic pile and high temperatures in transgressive corridors leading up to VMS deposits, are consistent with a convective hydrothermal model, in which heat from the subvolcanic intrusion drove seawater through the volcanic pile. Granite-hosted sericite–quartz alteration zones are 18O-enriched, and are tentatively interpreted to have formed from a mixed magmatic-evolved seawater fluid. Received: 12 April 1999 / Accepted: 6 April 2000  相似文献   

17.
In the Mazowe area some 40 km NW of Harare in Zimbabwe, gold mineralization is hosted in a variety of lithologies of the Archean Harare-Bindura-Shamva greenstone belt, in structures related to the late Archean regional D2/3 event. Conspicuous mineralzogical differences exist between the mines; the mainly granodiorite-hosted workings at Mazowe mine are on pyrite-rich reefs, mines of the Bernheim group have metabasalt host rocks and are characterized by arsenopyrite-rich ores, and Stori's Golden Shaft and Alice mine, both in metabasalts, work sulfide-poor quartz veins. In contrast to the mineralogical diversity, near-identical fluid inventories were found at the different mines. Both H2O-CO2-CH4 fluids of low salinity, and highly saline fluids are present and are regarded to indicate fluid mixing during the formation of the deposits. Notably, these fluid compositions in the Mazowe gold field markedly contrast to ore fluids “typical” of Archean mesothermal gold deposits on other cratons. Stable isotope compositions of quartz from the various deposits (δ18O=10.8 to 13.2‰ SMOW), calcite (δ18O=9.5 to 11.9‰ SMOW and δ13C=−3.2 to −8.0‰ PDB), inclusion water (δD=−28 to −40‰ SMOW) and sulfides (δ34S=1.3 to 3.2‰ CDT) are uniform within the range typical for Archean lode gold deposits worldwide. The fluid and stable isotope compositions support the statement that the mineralization in the Mazowe gold field formed from relatively reduced fluids with a “metamorphic” signature during a single event of gold mineralization. Microthermometric data further indicate that the deposits formed in the PT range of 1.65–2.3 kbar and 250–380 °C. Ages obtained by using the Sm/Nd and Rb/Sr isotope systems on scheelites are 2604 ± 84 Ma for the mineralization at Stori's Golden Shaft mine, and 2.40 ± 0.20 Ga for Mazowe mine. The Archean age at Stori's is regarded as close to the true age of gold mineralization in the area, whereas the Proterozoic age at Mazowe mine probably reflects later resetting. Received: 30 September 1998 / Accepted: 17 August 1999  相似文献   

18.
The Ouenza siderite deposit is located proximal to evaporitic diapirs of Triassic age. Mineralization occurs mainly in Aptian neritic limestones which host important iron concentrations (120–150 MT) and minor Pb, Zn, Cu, Ba and F occurrences. The iron ore consists of iron carbonate minerals which have been oxidized partially to hematite. Fine-grained ankerite and siderite replace limestones, whereas sparry ankerite and siderite were emplaced in veins. Limited variation in the chemical and isotopic compositions of ankerite and siderite were observed, which indicate that they precipitated from the same fluid. Stable isotope compositions (δ18O and δ13C) of iron carbonates and limestones allow estimation of the isotopic composition of the mineralizing fluid and precipitation temperature: δ18O = 7.5‰ SMOW, T = 100–120 °C. Later deposition of Pb, Zn, Cu, Ba and F minerals is controlled by fractures oriented NE–SW and SE–NW. Fluid inclusion studies of quartz yield salinities of 18–22 wt.% equivalent NaCl and homogenization temperatures between 150 and 180 °C. These values are similar to those of Mississippi Valley type deposits which are associated with basinal brines. Received: 4 January 1996 / Accepted: 17 July 1996  相似文献   

19.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

20.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号