首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The magnetic Reynolds number, R M, is defined as the product of a characteristic scale and associated flow speed divided by the microphysical magnetic diffusivity. For laminar flows, R M also approximates the ratio of advective to dissipative terms in the total magnetic energy equation, but for turbulent flows this latter ratio depends on the energy spectra and approaches unity in a steady state. To generalize for flows of arbitrary spectra we define an effective magnetic dissipation number,   R M,e  , as the ratio of the advection to microphysical dissipation terms in the total magnetic energy equation, incorporating the full spectrum of scales, arbitrary magnetic Prandtl numbers, and distinct pairs of inner and outer scales for magnetic and kinetic spectra. As expected, for a substantial parameter range   R M,e∼ O (1) ≪ R M  . We also distinguish   R M,e  from     where the latter is an effective magnetic Reynolds number for the mean magnetic field equation when a turbulent diffusivity is explicitly imposed as a closure. That   R M,e  and     approach unity even if   R M≫ 1  highlights that, just as in hydrodynamic turbulence, energy dissipation of large-scale structures in turbulent flows via a cascade can be much faster than the dissipation of large-scale structures in laminar flows. This illustrates that the rate of energy dissipation by magnetic reconnection is much faster in turbulent flows, and much less sensitive to microphysical reconnection rates compared to laminar flows.  相似文献   

2.
Data on interstellar diffraction and refraction scintillation of pulsars are analyzed. Comparison between theory and the observational data shows that two types of spectra for electron density fluctuations are realized in the interstellar medium: pure power law and piecewise with a break. The distribution of turbulent plasma in the Galaxy has a three component structure. Component A is diffuse and it is distributed outside of the spiral arms of the Galaxy. Component BI is cloudy and associated with Galactic arms. Component BII is extremely nonuniform and associated with HII regions and supernova remnants. The origin of the interstellar plasma turbulence is considered, and possible sources of turbulent energy are discussed. The contribution of supernova bursts in the interstellar gas ionization and generation of turbulence are analyzed among other factors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
From 2001 January to 2002 June, we monitored PSRs B0329+54, B0823+26, B1929+10, B2020+28 and B2021+51 using the Nanshan 25-m radio telescope of the Urumqi Observatory to study their diffractive interstellar scintillation (DISS). The average interval between observations was about 9 d and the observation duration ranged between 2 and 6 h depending on the pulsar. Wide variations in the DISS parameters were observed over the 18-month data span. Despite this, the average scintillation velocities are in excellent agreement with the proper motion velocities. The average two-dimensional autocorrelation function for PSR B0329+54 is well described by a thin-screen Kolmogorov model, at least along the time and frequency axes. Observed modulation indices for the DISS time-scale and bandwidth and the pulsar flux density are greater than values predicted for a Kolmogorov spectrum of electron density fluctuations. Correlated variations over times that are long compared to the nominal refractive scintillation time are observed, suggesting that larger scale density fluctuations are important. For these pulsars, the scintillation bandwidth as a function of frequency has a power-law index  (∼3.6)  much less than that expected for Kolmogorov turbulence (∼4.4). Sloping fringes are commonly observed in the dynamic spectra, especially for PSR B0329+54. The detected range of fringe slopes are limited by our observing resolution. Our observations are sensitive to larger-scale fringes and hence smaller refractive angles, corresponding to the central part of the scattering disc.  相似文献   

4.
Short time‐scale radio variations of compact extragalactic radio quasars and blazars known as IntraDay Variability (IDV) can be explained in at least some sources as a propagation effect; the variations are interpreted as scintillation of radio waves in the turbulent interstellar medium of the Milky Way. One of the most convincing observational arguments in favor of a propagation‐induced variability scenario is the observed annual modulation in the characteristic time scale of the variation due to the Earth's orbital motion. So far there are only two sources known with a well‐constrained seasonal cycle. Annual modulation has been proposed for a few other less well‐documented objects. However, for some other IDV sources source‐intrinsic structural variations which cause drastic changes in the variability time scale were also suggested. J1128+592 is a recently discovered, highly variable IDV source. Previous, densely time‐sampled flux‐density measurements with the Effelsberg 100‐m radio telescope (Germany) and the Urumqi 25‐m radio telescope (China), strongly indicate an annual modulation of the time scale. The most recent 4 observations in 2006/7, however, do not fit well to the annual modulation model proposed before. In this paper, we investigate a possible explanation of this discrepancy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic turbulence can accelerate grains through resonant as well as non-resonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvénic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for submicron grains. We provide comprehensive discussion of all the possible grain acceleration mechanisms in interstellar medium. We show that supersonic velocities are attainable for Galactic dust grains. We discuss the consequence of the acceleration. The implications for extinction curve, grain alignment, chemical abundance etc. are provided.  相似文献   

6.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

7.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.  相似文献   

8.
The recent discovery of radio variability of a quasar on short time-scales (hours) prompts us to examine what is expected in respect of the interstellar scintillation of very compact, extragalactic radio sources. We find that large-amplitude, rapid, variability is predicted at commonly observed radio frequencies (1–20 GHz) over the vast majority of the extragalactic sky. As a guide to assist observers in understanding their data, we demonstrate simple techniques for predicting the effects of interstellar scintillation on any extragalactic source.  相似文献   

9.
The role of magnetohydrodynamic (MHD) turbulence in the cosmic ray acceleration process in a volume with a reconnecting magnetic field is studied by means of Monte Carlo simulations. We performed modelling of proton acceleration, with the three-dimensional analytic model of stationary reconnection of Craig et al. providing the unperturbed background conditions. Perturbations of particle trajectories resulting from a turbulent magnetic field component were simulated using small-amplitude pitch-angle momentum scattering, enabling modelling of both small- and large-amplitude turbulence in a wide wavevector range. Within the approach, no second-order Fermi acceleration process is allowed. Comparison of the acceleration process in models involving particle trajectory perturbations with the unperturbed model reveals that the turbulence can substantially increase the acceleration efficiency, enabling much higher final particle energies and flat particle spectra.  相似文献   

10.
We study the scattering of low-energy cosmic rays (CRs) in a turbulent, compressive magnetohydrodynamic (MHD) fluid. We show that compressible MHD modes – fast or slow waves with wavelengths smaller than CR mean free paths induce cyclotron instability in CRs. The instability feeds the new small-scale Alfvénic wave component with wavevectors mostly along magnetic field, which is not a part of the MHD turbulence cascade. This new component gives feedback on the instability through decreasing the CR mean free path. We show that the ambient turbulence fully suppresses the instability at large scales, while wave steepening constrains the amplitude of the waves at small scales. We provide the energy spectrum of the plane-parallel Alfvénic component and calculate mean free paths of CRs as a function of their energy. We find that for the typical parameters of turbulence in the interstellar medium and in the intercluster medium the new Alfvénic component provides the scattering of the low-energy CRs that exceeds the direct resonance scattering by MHD modes. This solves the problem of insufficient scattering of low-energy CRs in the turbulent interstellar or intracluster medium that was reported in the literature.  相似文献   

11.
Based on the observed features and physical conditions in the radio jets of several low-luminosity radio galaxies, I discuss the re-acceleration of relativistic electrons. On assuming a Fermi type acceleration, an acceleration coefficient of ~10?15 s?1 was obtained, which can well explain the radio brightness distribution in the jets and their spectrum. I further discuss the possibility of MHD turbulence providing the acceleration, and find that the turbulence energy spectral index must be restricted to the very narrow range 1.6–1.7.  相似文献   

12.
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.  相似文献   

13.
单洁  叶景  蔡强伟  林隽 《天文学报》2021,62(2):14-39
磁重联在宇宙的许多动力学现象中都是非常核心的过程.磁流体动力学(MHD)数值模拟是研究磁重联过程以及相应物理图像的一种很有效的手段.通过不同的参数组合,来研究MHD数值模拟中磁雷诺数和空间分辨率对磁重联率、数值耗散和能谱分布的影响.对得到的数据进行分析后,发现磁雷诺数对磁重联率和能谱分布有一定的影响.磁雷诺数越大,磁重联过程进入非线性阶段所需的特征时间越短,磁重联率就越早发生跃升.磁雷诺数Rm对耗散开始发挥作用的Kolmogorov微观尺度lko有明显影响:Rm越大,lko就越小.研究了磁重联过程中包括数值耗散在内的额外耗散对重联过程的影响.结果表明,撕裂模不稳定性开始之前的额外耗散以纯数值耗散为主,撕裂模不稳定性出现之后,额外耗散出现同步跃升,说明不稳定性导致的湍流明显增强了耗散的效果,相当于在局部湍流区引入了超电阻.能谱分析进一步表明,大尺度电流片的lko完全可能出现在宏观的MHD尺度上.  相似文献   

14.
Acceleration of cosmic rays interacting with the anisotropic magnetohydrodynamic turbulent medium is studied. Particle acceleration is caused by a large-scale electric field arising in a turbulent medium due to the α-effect. A comparison is made of equilibrium spectra of cosmic rays, characteristic of the specific acceleration mechanism, with the energy distribution of particles corresponding to the statistical Fermi acceleration.  相似文献   

15.
The decay of kinetic helicity is studied in numerical models of forced turbulence using either an externally imposed forcing function as an inhomogeneous term in the equations or, alternatively, a term linear in the velocity giving rise to a linear instability. The externally imposed forcing function injects energy at the largest scales, giving rise to a turbulent inertial range with nearly constant energy flux while for linearly forced turbulence the spectral energy is maximum near the dissipation wavenumber. Kinetic helicity is injected once a statistically steady state is reached, but it is found to decay on a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds number (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
An attempt is made to construct a phenomenological model of turbulence as a self-organization process in an open system. The representation of a turbulized continuum in the form of a thermodynamic complex consisting of two subsystems—the subsystem of averaged motion and the subsystem of turbulent chaos, which is considered, in turn, as a conglomerate of vortex structures of different space–time scales—made it possible to obtain, by methods of nonequilibrium thermodynamics, the defining relationships for the turbulent fluxes and forces that describe most comprehensively the transport and structurization processes in such a continuum. Using two interpretations of the Kolmogorov parameter (as a quantity that describes the rate of dissipation of energy into heat and as the rate of transfer of turbulent energy in the eddy cascade), the defining relationships were found for this quantity, thereby making the thermodynamic approach self-sufficient. An introduction into the model of internal parameters of the medium, which characterize the excitation of macroscopic degrees of freedom, made it possible to describe thermodynamically the Kolmogorov cascade process and to obtain a variety of kinetic equations (of the Fokker–Planck type in the configuration space) for the functions of distribution of small-scale turbulence characteristics, including the unsteady kinetic equation for the distribution of probability of dissipation of turbulent energy. As an example, a detailed derivation of such relationships is given for the case of stationary turbulence, when a tendency toward local isotropy is observed. In view of the wide occurrence of this phenomenon in nature, one might expect that the developed approach to the problem of modeling strong turbulence will find its use in astrophysical and geophysical applications.  相似文献   

17.
Blazars from the first-three-months Fermi-AGN list were observed with the Urumqi 25-m radio telescope at 5 GHz in IDV (Intra-Day Variability) mode and inter-month observation mode. A significant correlation between the flux density at 5 GHz and the γ-ray intensity for the Fermi-LAT detected blazars is seen. There is a higher IDV detection rate in Fermi detected blazars than those reported for other samples. Stronger variability appears at lower galactic latitudes; IDV appears to be stronger in weaker sources, indicating that the variability is affected by interstellar scintillation.  相似文献   

18.
Scintillation of pulsar radio emission provides information about the interstellar medium along the path to the pulsar and the velocities of pulsars. It also affects the precision of pulse timing observations. Using a pulsar timing system developed at the Urumqi Astronomical Observatory25 m telescope, we observed diffractive scintillation dynamic spectra for several strong northern pulsars. This paper introduces the observing system and discusses the observational results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent (re)acceleration of relativistic particles allow good correspondence with present observations, from radio halos to γ-ray upper limits, although several aspects of this complex scenario still remain poorly understood.  相似文献   

20.
The nearby radio galaxy Centaurus A is poorly studied at high frequencies with conventional radio telescopes because of its very large angular size, but is one of a very few extragalactic objects to be detected and resolved by the Wilkinson Microwave Anisotropy Probe ( WMAP ). We have used the five-year WMAP data for Cen A to constrain the high-frequency radio spectra of the 10° giant lobes and to search for spectral changes as a function of position along the lobes. We show that the high-frequency radio spectra of the northern and southern giant lobes are significantly different: the spectrum of the southern lobe steepens monotonically (and is steeper further from the active nucleus) whereas the spectrum of the northern lobe remains consistent with a power law. The inferred differences in the northern and southern giant lobes may be the result of real differences in their high-energy particle acceleration histories, perhaps due to the influence of the northern middle lobe, an intermediate-scale feature which has no detectable southern counterpart. In light of these results, we discuss the prospects for Fermi Gamma-ray Space Telescope detections of inverse-Compton emission from the giant lobes and the lobes' possible role in the production of the ultra-high-energy cosmic rays (UHECR) detected by the Pierre Auger Observatory. We show that the possibility of a Fermi detection depends sensitively on the physical conditions in the giant lobes, with the northern lobe more likely to be detected, and that any emission observed by Fermi is likely to be dominated by photons at the soft end of the Fermi energy band. On the other hand, we argue that the estimated conditions in the giant lobes imply that UHECRs can be accelerated there, with a potentially detectable γ-ray signature at TeV energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号