首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—We investigate the distribution of partial melt in island arc using the seismic velocity structure of the mantle wedge beneath northeastern Japan. The comparison of the seismic tomography with laboratory velocity data on a partially-molten mantle rock yields estimates of melting zones in three dimensions. We employ experimental data on the degree of partial melt in hydrous peridotite to give constraints on the melt fraction and temperature. Melting and magma-rich zones derived from the velocity structure coincide with observed low Q zones. The results of the three-dimensional mapping indicate that the source of magma in island arc is diapir-like melting patches localized within the low velocity zones of the mantle wedge. Extensive volcanic activity along the volcanic front is due to the presence of vast magma-rich zones just beneath the Moho. Those melting zones in the uppermost mantle may, in turn, cause melting of lower crustal materials and produce felsic magma. Melt appears to stay at and beneath the Moho, where crystallization fractionation may proceed. Melt exists at greater depths in the back-arc region, which may correlate with across-arc variations of chemical compositions of the volcanic rocks observed in northeastern Japan. We suggest that magma migration in the ductile lower crust may cause low-frequency microearthquakes, and magma penetration into the brittle upper crust may produce mid-crustal S-wave reflectors.  相似文献   

2.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

3.
Volcanic tremor on Etna seems to have its origin within the main magma feeding system. On the basis of both spectral analyses at two permanent seismic stations and periodical measurements along the slopes of the volcano, two distinct sources are proposed. The former, characterized by low frequency contents (f<1.5 Hz), is located in a 2 km deep flat magma chamber, whereas the latter source seems to be linked to the upper part of the active vents.Turbulent motions in the magma-gas mixture, induced by escaping gases within the conduits, is one proposed cause of volcanic tremor on Etna (Seidl et al., 1981).From spectral analyses we propose approximate models of the feeding system of the main summit craters.Time variations of tremor energy were also investigated, and no regular patterns have been observed for the studied eruptions.More systematic information seems to be needed for a better knowledge of both the source model and location, and correlation between tremor features and volcanic activity.  相似文献   

4.
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel ‘Sarmiento de Gamboa’. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan–southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW–SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian–Tindari–Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.  相似文献   

5.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

6.
Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQ c (codaQ) in the hypothesis of singleS toS backscattering.Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.  相似文献   

7.
The attenuation in Southeastern Sicily has been investigated using 40aftershocks of the December 13 1990, earthquake. The quality factor ofcoda waves (Qc) was estimated in the frequency range 1.5–24 Hz,applying three different methods in time and frequency domains. On thewhole, a clear dependence of Qc on frequency was observed,according to the general law Q = Q0(f/f0)n . Thefrequency dependence relationships obtained from the analysis of codawaves at three lapse time windows (10, 20 and 30 seconds) show that, forall methods, Q0 (Qc at 1 Hz) significantly increases with lapsetime. In particular, Q0 is approximately 20 at short lapse time (10s) and increases to about 70 at longer lapse time (30 s). This is attributedto the fact that larger lapse times involve deeper parts of the crust andupper lithosphere which may be characterized by larger quality factors.Moreover, the value of the exponent n decreases with increasing codalengths from about 1.3 to 0.9, suggesting a decrease in heterogeneity ofthe medium with depth.Finally, Qc-values here found are of the same order as thosereported from other tectonic regions like the Anatolian Highlands orSouthern Spain, while significantly higher than in the neighboring volcanicarea of Mt. Etna.  相似文献   

8.
Historical volcanic rocks of the Aeolian islands range in composition from shoshonitic basalts to rhyolites, which might reflect fractional crystallization of a shoshonitic parent magma. However Sr and Pb isotopic data indicate a more complex history. The shoshonitic basalts at present erupted at Stromboli, although chemically similar to the postulated parent magma, are genetically unrelated to the other studied rocks. Sr isotopes indicate that Vulcano, Vulcanello and Lipari had independent magma sources. It is proposed that crustal contamination raised the Sr isotopic composition of the Lipari rhyolites. The rocks of these island are related by a common very steep trend of207Pb/204Pbvs. 206Pb/204Pb. Such a trend is a common feature of orogenic magmas and shows that Pb was derived by mixing of at least two components. Presently it is impossible to constrain precisely either the timing or the physical meaning of the Pb end members. The Pb isotopic trend in the Eolian island is very distinct from those recorded in volcanic rocks both from behind the arc (Etna, Iblean Mts.) and from Central and Southern Italy.  相似文献   

9.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

10.
The attenuation property of Andaman Island has been investigated analyzing coda waves from 57 local earthquakes in the magnitude range of 2.0–4.9, using the single backscattering model. These earthquakes waveforms, recorded on five broadband seismographs sited over the island from north to south during Nov. 2003 to March 2004, have been used to calculate the frequency dependent Coda Q (Q c ) applying the time domain coda-decay method. The Coda Q, computed at central frequencies from (0.5–12) Hz and five-lapse time windows from 40 to 80 s, progressively increases from 105 f 0.88 in the north Andaman to 135 f 0.79 in the south Andaman with an average of 119 f 0.80. The average Q c values vary from 75 ± 42 at 0.5 Hz to 697 ± 54 at 12 Hz central frequency for 40 s lapse time window, while for 80 s lapse time window its variation is from 117 ± 38 at 0.5 Hz to 1256 ± 115 at 12 Hz. The Q c estimated at different lapse times manifests a significant variation from 122f 0.75 to 174f 0.73, corresponding to lapse time window lengths of 40 and 80 s, respectively. The variation of Q c with frequency, lapse time and also with the location of seismograph reflects the marked structural and compositional inhomogeneity with depth along the Andaman Islands. These observations are well correlated with the seismicity pattern and distinct high angle subduction beneath the island.  相似文献   

11.
Many earthquakes within the crust near Ruapehu and Ngauruhoe volcanoes, recorded at epicentral distances less than 20 km on vertical seismometers, show S-waves of lower dominant frequency than the P-waves. A large number also have amplitudes in the S-group less than those of the P-waves. Whereas the reduced amplitude of S-waves relative to that of P-waves can be a source mechanism effect, the corresponding reduction in dominant frequency should be independent of the source radiation pattern. The most plausible reason for such a reduction in dominant S-wave frequency is that the waves have passed through a zone of partially molten rock. The data are therefore interpreted in terms of the presence of magma in restricted zones near the volcanoes.Using ray paths from 232 hypocentres to three permanent seismograph stations, together with paths from three additional earthquakes to one permanent and two temporary stations, an interpretation in three dimensions has been made of the source of the anomalous attenuation at depths between 2 and 10 km below datum (Ruapehu Crater Lake). Wave paths which lie largely at depths shallower than 2 km cannot be used, as almost all such paths show evidence of enhanced S-wave attenuation, and this is attributed to the presence of superficial pyroclastic and unconsolidated laharic material within 2 km of the surface.At Ruapehu, the data suggest the presence of three principal intrusions, one underlying much of the southwest slopes and reaching as far east as Crater Lake, one beneath the eastern side of the Summit Plateau, and one beneath part of the northeast slopes of the volcano. All three are essentially vertical or steeply dipping structures, detectable to a depth of between 7 and 9 km. The first appears to extend to within about 5 km of the surface, whereas the other two have intruded to within 2 or 3 km. Other, less well-defined, and comparatively small bodies exist beneath both the western and eastern slopes of Ruapehu.In the Ngauruhoe area, few earthquakes have occurred and all have been at depths less than 6 km. Therefore, only shallow attenuating areas can be defined. A small area of anomalous S-wave attenuation occurs beneath the northwest slopes of Ngauruhoe, and another, elongated, body appears to coincide with a fault zone west of the volcano. Both of these lie at depths of about 3 km below datum (less than 2 km below surface in one locality).Finally, areas of high attenuation, at depths of 4–5 km below datum, appear to define a narrow east-west zone about 6 km long in the immediate area of Whakapapa village. Other zones exist east of the volcanic axis, defining a line which cuts the axis on the north east slopes of Ruapehu, at a point where a parasite crater formed a few thousand years ago.  相似文献   

12.
The pattern of volcanic tremor accompanying the 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusing on the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.  相似文献   

13.
During 1999, the volcanic activity at Mt. Etna was both explosive and effusive at the summit craters: Strombolian activity, lava fountains and lava flows affected different areas of the volcano, involving three of the four summit craters. Results from analysis of the 1999 volcanic tremor features are shown at two different time scales. First, the long-term time variation of the features of the volcanic tremor (including spectral and polarization parameters), during the entire year, was compared with the evolution of the eruptive activity. This approach demonstrated the good agreement between tremor data and observed eruptive activity; the activation of different tremor sources was suggested. Then, a more refined analysis of the volcanic tremor, recorded during 14 lava fountain eruptions, was performed. In particular, a shift of the dominant frequencies towards lower values was noted which corresponds with increasing explosive activity. Similar behaviour in the frequency content has already been observed in other explosive eruptions at Mt. Etna as well as on other volcanoes. This behaviour has been explained in terms of either an increase in the tremor source dimension or a decrease in the sound speed in the magma within the conduit. These results confirm that the volcanic tremor is a powerful tool for better understanding the physical processes controlling explosive eruptions at Mt. Etna volcano.  相似文献   

14.
The attenuation of amplitude is seen in seismic waves which pass through the central region of the Aso caldera, in Kyushu, Japan. It is also recognized from spectral analysis of seismic waves that the higher frequencies of the P-wave are reduced in the waves which pass through the central region of the caldera. It is shown that the relative attenuation increases remarkably for the frequency range of 5 to 10 Hz. The specific attenuation factor Q of the P-wave train is about 100. From the surface projection of the ray paths with low Q values through the Aso caldera to each station, the attenuating region is located beneath the center of the caldera, extending to the north of the central cones. In conjunction with the low Q value of the P-wave and the decreases of S-wave amplitudes, the relative P-wave residual times have comparatively large values for seismic waves passing through the central region beneath the caldera. In order to attempt to provide additional information on the depth configuration of the attenuating material, the ray paths of P-wave's first arrivals are located in three-dimensional space. It indicates that the low-velocity material is located beneath the center of the caldera at depths of about 6 to 9 km. However, lowvelocity anomalies above the depth of 6 km and below the depth of 15 km were not able to be detected, because most of the available seismic ray paths had crossed the caldera at depths of about 6 to 15 km. Furthermore, the relative residual times have numerous errors resulting from incorrect hypocenter locations, origin times, inhomogeneities in the structure and uncertainty of the velocity structure. At shallow depths in the Aso caldera, refraction or reflection studies are required for an accurate estimate of the structure and more detailed properties of the attenuating material.  相似文献   

15.
Based on the single scattering model of coda power spectrum analysis, digital waveform data of 50 events recorded by the real-time processing system of the Chengdu telemetry network are analyzed to estimate the Q c values of earth medium beneath the Chengdu telemetry network for several specified frequencies. It is found that the Q c shows the frequency dependency in the form of Q c = Q 0 f n in the range of 1.0 to 20.0Hz. Estimated Q 0 ranges from 60.83 to 178.05, and n is found to be 0.713 to 1.159. The average value of Q 0 and n are 117 and 0.978 respectively. This result indicates the strong frequency dependency of the attenuation of coda waves beneath the Chengdu telemetry network. Comparing with the results obtained in other regions of the world, it is found that Q 0 −1 value and its change with frequency are similar to those in regions with strong tectonic activity. This subject is supported by the Ministry of Personnel, China for partly sponsoring.  相似文献   

16.
On the basis of data collected during a seismological investigation carried out on Mt. Etna (Italy) during a phase of the volcanic activity marked by progressive transition from Strombolian bursts to effusive paroxysms at the SE crater (January 1990), three types of seismic regime have been recognized. They are interpreted to be linked to modifications in the regimes of volcanic gases and vapours within the upper levels of the magma column, as suggested by recent studies on the dynamics of magmatic fluids. Our analysis also reveals that the use of usual seismic parameters, such as the temporal patterns associated with the occurrence of discrete low-frequency events (“spindles”) and the coefficient m of the Ishimoto-Iida law, can furnish information about variations in the behaviour of the system before the irreversible evolution of the volcanic activity toward eruptive paroxysms.  相似文献   

17.
阿尔山火山区地壳上地幔电性结构初探   总被引:18,自引:7,他引:11       下载免费PDF全文
在阿尔山活火山区一条北北西向测线上进行了7个大地电磁测深点的观测。2-D解释结果表明,研究区内新、老两条火山带可能存在通往深部的岩浆通道。其中,新发现的活火山带地下在10~12km还保持着较高的热状态,很可能富含流体,在30~50km处可能是地幔向上的供热通道;而老火山带30km以上可能存在一个正在冷却的岩浆通道,两条火山条带的深部可能是同源的。  相似文献   

18.
87 Sr/86Sr (0.70322) and δ 18O ( ∼2.9‰), whereas significantly lower and higher values, respectively, are found in samples from the Bárdarbunga volcanic system (0.70307 and 3.8‰). These results strongly indicate that the Gjálp magma originated from the Grímsv?tn magma system. The 1996 magma is of an intermediate composition, representing a basaltic icelandite formed by 50% fractional crystallization of a tholeiite magma similar in composition to that expelled by the 1998 Grímsv?tn eruption. The differentiation that produced the Gjálp magma may have taken place in a subsidiary magma chamber that last erupted in 1938 and would be located directly beneath the 1996 eruption site. This chamber was ruptured when a tectonic fracture propagated southward from Bárdarbunga central volcano, as indicated by the seismicity that preceded the eruption. Our geochemical results are therefore not in agreement with lateral magma migration feeding the 1996 Gjálp eruption. Moreover, the results clearly demonstrate that isotope ratios are excellent tracers for deciphering pathways of magma migration and permit a clear delineation of the volcanic systems beneath Vatnaj?kull ice sheet. Received: 1 April 1998 / Accepted: 17 August 1999  相似文献   

19.
Macroseismic studies, linear refraction profiles, and a two-dimensional seismic array study on Mount Etna, have all detected anomalous low velocity zones beneath the volcano. Seismic travel time delays together with high frequency attenuation observations confirm the presence of a large volume of partial melt beneath the volcano. A simplified three-dimensional model of the main storage system of Mount Etna is presented.Paper presented at the Symposium Volcanoes of the Earth and Planets, held at the University of Lancaster, March 17, 1981.  相似文献   

20.
The single scattering model has been applied for the estimation of codaQ values for local earthquakes that occurred in northern Greece during the period 1983–1989 and recorded by the telemetered network of the Geophysical Laboratory of the University of Thessaloniki. CodaQ estimations were made for four frequency bands centered at 1.5 Hz, 3.0 Hz, 6.0 Hz and 12.0 Hz and for the lapse time windows 10–20 sec, 15–30 sec, 20–45 sec, 30–60 sec and 50–100 sec. The codaQ values obtained show a clear frequency dependence of the formQ c =Q 0 f n , whileQ 0 andn depend on the lapse time window.Q 0 was found equal to 33 andn equal to 1.01 for the time window of 10 to 20 sec, while for the other windowsQ 0 increased from 60 to 129, withn being stable, close to 0.75. This lapse time dependence is interpreted as due to a depth dependent attenuation. The high attenuation and the strong frequency dependence found are characteristic of an area with high seismicity, in agreement with studies in other seismic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号