首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We calculate the secondary anisotropies in the cosmic microwave background (CMB) produced by inhomogeneous reionization from simulations in which the effects of radiative and stellar feedback effects on galaxy formation have been included. This allows us to determine self-consistently the beginning ( z i≈30), the duration ( δz ≈20) and the (non-linear) evolution of the reionization process for a critical density cold dark matter (CDM) model. In addition, from the simulated spatial distribution of ionized regions, we are able to calculate the evolution of the two-point ionization correlation function, C χ , and obtain the power spectrum of the anisotropies, C , in the range 5000<ℓ<106. The power spectrum has a broad maximum around ℓ≈30 000, where it reaches the value 2×10−12. We also show that the ionization correlation function C χ is not Gaussian, but at separation angles θ ≲10−4 rad it can be approximated by a modified Lorentzian shape; at larger separations an anticorrelation signal is predicted for both C χ and C ( θ ). Detection of signals as above will be possible with future millimetre-wavelength interferometers like the Atacama Large Millimeter Array (ALMA) , which appears as an optimum instrument to search for signatures of inhomogeneous reionization.  相似文献   

2.
In this paper we have extended the entropy-driven model of cluster evolution developed by Bower in order to be able to predict the evolution of galaxy clusters for a range of cosmological scenarios. We have applied this model to recent measurements of the evolution of the L x− T normalization and X-ray luminosity function in order to place constraints on cosmological parameters. We find that these measurements alone do not select a particular cosmological framework. An additional constraint is required on the effective slope of the power spectrum to break the degeneracy that exists between this and the background cosmology. We therefore include a theoretical calculation of the Ω0 dependence on the power spectrum, based on the cold dark matter paradigm, which infers Ω0<0.55 (0.1<Ω0<0.7 for Ω00=1), at the 95 per cent confidence level. Alternatively, an independent measurement of the slope of the power spectrum from galaxy clustering requires Ω0<0.6 (Ω0<0.65 for Ω00=1), again to 95 per cent confidence. The rate of entropy evolution is insensitive to the values of Ω0 considered, although it is sensitive to changes in the distribution of the intracluster medium.  相似文献   

3.
We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry  ( u , g , r , i , z , y )  can be complemented by space-based near-infrared (near-IR) photometry  ( J , H )  , e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo- z method we evaluate the figure of merit for the dark energy parameters  ( w 0, w a )  . We consider a DUNE -like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3–1.7 if IR filters are added onboard DUNE . Furthermore we show that with IR data catastrophic photo- z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u -band data could be as effective as the IR. We also find that about  105–106  spectroscopic redshifts are needed for calibration of the full survey.  相似文献   

4.
The locations of the peaks of the cosmic microwave background (CMB) spectrum are sensitive indicators of cosmological parameters, yet there is no known analytic formula which accurately describes their dependence on them. We parametrize the location of the peaks as   l m = l A( m - φ m )  , where l A is the analytically calculable acoustic scale and m labels the peak number. Fitting formulae for the phase shifts φ m for the first three peaks and the first trough are given. It is shown that in a wide range of parameter space, the acoustic scale l A can be retrieved from actual CMB measurements of the first three peaks within 1 per cent accuracy. This can be used to speed up likelihood analysis. We describe how the peak shifts can be used to distinguish between different models of dark energy.  相似文献   

5.
We report the discovery of a variable object in the Hubble Deep Field North (HDF-N) which brightened, during the 8.5 d sampled by the data, by more than 0.9 mag in I 814 and about 0.7 mag in V 606, remaining stable in B 450. Subsequent observations of the HDF-N show that two years later this object has dimmed to about its original brightness in I 814. The colours of this object, its brightness, its time behaviour in the various filters and the evolution of its morphology are consistent with it being a Type Ib supernova in a faint galaxy at z .  相似文献   

6.
We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ 8, from peculiar velocities, cosmic microwave background (CMB) and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a 'biasing' relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Λ cold dark matter (ΛCDM) cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 σ level. This therefore justifies a joint analysis, in which we find a joint best-fitting point and 95 per cent confidence limits of     (0.17,0.39),     (0.64,0.86) and     (0.98,1.37). In terms of the natural parameter combinations for these data     (0.40,0.73),     (0.16,0.27). Also for the best-fitting point,     and the age of the Universe is 13.2 Gyr.  相似文献   

7.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

8.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

9.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

10.
The plethora of recent cosmologically relevant data has indicated that our Universe is very well fitted by a standard Friedmann–Lemaître–Robertson–Walker (FLRW) model, with     and  ΩΛ≈ 0.73  – or, more generally, by nearly flat FLRW models with parameters close to these values. Additional independent cosmological information, particularly the maximum of the angular-diameter (observer area) distance and the redshift at which it occurs, would improve and confirm these results, once sufficient precise Type Ia supernovae data in the range  1.5 < z < 1.8  become available. We obtain characteristic FLRW-closed functional forms for   C = C ( z )  and     , the angular-diameter distance and the density per source counted, respectively, when  Λ≠ 0  , analogous to those we have for  Λ= 0  . More importantly, we verify that for flat FLRW models z max– as is already known but rarely recognized – the redshift of C max, the maximum of the angular-diameter distance, uniquely gives  ΩΛ  , the amount of vacuum energy in the universe, independent of H 0, the Hubble parameter. For non-flat models, determination of both z max and C max gives both  ΩΛ  and ΩM, the amount of matter in the universe, as long as we know H 0 independently. Finally, determination of C max automatically gives a very simple observational criterion for whether or not the universe is flat – presuming that it is FLRW.  相似文献   

11.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

12.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

13.
In this paper, I investigate the family of mixed three-point correlation functions  〈τ q γ3− q 〉, q = 0, 1, 2  , between the integrated Sachs–Wolfe (iSW) temperature perturbation τ and the galaxy overdensity γ as a tool for detecting the gravitational interaction of cosmic microwave background (CMB) photons with the potentials of non-linearly evolving cosmological structures. Both the iSW-effect and the galaxy overdensity are derived in hyperextended perturbation theory to second order and I emphasize the different parameter sensitivities of the linear and non-linear iSW-effect. I examine the configuration dependence of the relevant bispectra, quantify their sensitivities and discuss their degeneracies with respect to the cosmological parameters  Ωm, σ8, h   and the dark energy equation of state parameter w . I give detection significances for combining Planck CMB data and galaxy sample of a survey like Dark UNiverse Explorer (DUNE) by using a quadratic approximation for the likelihood with Λ cold dark matter (ΛCDM) as the fiducial cosmology: the combination of Planck with DUNE should be able to reach a cumulative signal-to-noise ratio of ≃0.6 for the bispectrum  〈τγ2〉  up to ℓ= 2000, which is too weak to be detected. The most important noise source is the primary CMB fluctuations as the Poisson noise in the galaxy number density is almost negligible for a survey like DUNE.  相似文献   

14.
A new method arising from a gauge-theoretic approach to general relativity is applied to the formation of clusters in an expanding universe. The three cosmological models (0=1, =0), (0=0.3, =0.7) and (0=0.3, =0) are considered, which extends our application in two previous papers. A simple initial velocity and density perturbation of finite extent is imposed at the epoch z =1000, and we investigate the subsequent evolution of the density and velocity fields for clusters observed at redshifts z =1, z =2 and z =3. Photon geodesics and redshifts are also calculated so that the cosmic microwave background (CMB) anisotropies arising from collapsing clusters can be estimated. We find that the central CMB temperature decrement is slightly stronger and extends to larger angular scales in the non-zero case. This effect is strongly enhanced in the open case. Gravitational lensing effects are also considered, and we apply our model to the reported microwave decrement observed towards the quasar pair PC 1643+4631 A&B.  相似文献   

15.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

16.
A new model for source counts from 8 to 1100 μm is presented, which agrees well with source-count data and the observed background spectrum. The model assumes different evolution for each of the four infrared template types used. The evolution is modified in two ways compared to my 2001 model: (i) the exponential factor is modified so that it tends to a constant value at late times and (ii) the power-law factor is modified so that it tends to zero at redshift   z f   , rather than zero as assumed previously. I find strong evidence from the 850 and 1100 μm counts, and from the infrared background, that   z f = 4–5  , with some preference for a value at the low end of the range, implying that star-forming galaxies at   z > 5  are not significant infrared emitters, presumably due to a low opacity in dust at these early epochs.
The model involves zero or even negative evolution for starbursts and active galactic nuclei at low redshifts (<0.2), suggesting that the era of major mergers and strong galaxy–galaxy interactions is over.  相似文献   

17.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

18.
In the context of cold dark matter (CDM) cosmological models, we have simulated images of the brightness temperature fluctuations in the cosmic microwave background (CMB) sky owing to the Sunyaev–Zel'dovich (S–Z) effect in a cosmological distribution of clusters. We compare the image statistics with recent ATCA limits on arcmin-scale CMB anisotropy. The S–Z effect produces a generically non-Gaussian field and we compute the variance in the simulated temperature-anisotropy images, after convolution with the ATCA beam pattern, for different cosmological models. All the models are normalized to the 4-yr COBE data. We find an increase in the simulated-sky temperature variance with increase in the cosmological density parameter Ω0. A comparison with the upper limits on the sky variance set by the ATCA appears to rule out our closed-universe model: low-Ω0 open-universe models are preferred. The result is independent of any present day observations of σ 8.  相似文献   

19.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

20.
Assuming that the dark matter is entirely made up of neutralinos, we re-visit the role of their annihilation on the temperature of diffuse gas in the high-redshift universe  ( z > 10)  , before the formation of luminous structures. We consider neutralinos of particle mass 36 and 100 GeV. The former is able to produce  ∼7  e e +  particles per annihilation through the fremionic channel, and the latter ∼53 particles assuming a purely bosonic channel. High-energy   e e +  particles up-scatter the cosmic microwave background (CMB) photons into higher energies via the inverse-Compton scattering. The process produces a power-law   e e +  energy spectrum of index −1 in the energy range of interest, independent of the initial energy distribution. The corresponding energy spectrum of the up-scattered photons is a power law of index −1/2, if absorption by the gas is not included. The scattered photons photoheat the gas by releasing electrons which deposit a fraction (14 per cent) of their energy as heat into the ambient medium. For uniformly distributed neutralinos, the heating is insignificant. The effect is greatly enhanced by the clumping of neutralinos into dense haloes. We use a time-dependent clumping model which takes into account the damping of density fluctuations on mass-scales smaller than  ∼10−6 M  . With this clumping model, the heating mechanism boosts the gas temperature above that of the CMB after a redshift of   z ∼ 30  . By   z ≈ 10  , the gas temperature is nearly 100 times its temperature when no heating is invoked. Similar increase is obtained for the two neutralino masses considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号