首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 537 毫秒
1.
鄱阳湖区洪灾风险与农户脆弱性分析   总被引:13,自引:0,他引:13  
马定国  刘影  陈洁  郑林  张文江 《地理学报》2007,62(3):321-332
运用1:5 万DEM 地形数据对鄱阳湖区洪涝灾害风险区区域范围及空间分布进行了分析。在此基础上, 以乡镇为基本研究单元, 选取乡村人口比重、耕地面积比重为洪灾风险暴露分析指标, 选取单位面积生产总值、农民人均纯收入、第一产业从业人员比重、农业收入占农村经济总收入比重等为农户洪灾应对能力分析指标, 并引入了不同洪水水位特征值的影响系数, 对鄱阳湖区农户洪灾脆弱性程度进行了定量研究。结果表明, 鄱阳湖洪灾风险区面积广、影响深, 农户对洪涝灾害总体上存在着较高的脆弱性; 在所涉及的180 个乡镇中, 农户脆弱度高于平均值的有100 个, 占到乡镇数55.56%。脆弱度最高的乡镇主要集中在滨湖地带及五河干流沿岸地区, 而脆弱度较低的乡镇则主要分布在湖区各县城关镇所在区域。  相似文献   

2.
蒙吉军  张彦儒  周平 《中国沙漠》2010,30(4):850-856
农牧交错带在我国区域生态安全建设中具有重要的生态地位。选择鄂尔多斯市作为研究区域,基于1988年和2000年自然和社会经济数据,通过对景观动态变化及生态脆弱性驱动因素的分析,确定脆弱性评价的指标体系,建立脆弱性评价模型,在GIS和SPSS软件支持下,运用空间主成分分析进行生态脆弱性评价。结果显示,鄂尔多斯大部分地区处于高度脆弱区和中度脆弱区,抵御外界干扰能力较差。生态脆弱性指数的空间分布有从东北、西部向中部逐渐增加的态势,生态脆弱性指数高的地区主要分布在人类活动比较频繁的城市区域、生态本底较为脆弱的库布齐沙漠和毛乌素沙地的西部地区。2000年与1988年相比,高度脆弱区分布范围有明显扩大、且连片趋势。其中,东胜区生态质量有所好转,准格尔旗没有较大变化,其他各旗都呈现恶化趋势,尤其以伊金霍洛旗为最。  相似文献   

3.
构建了基于"敏感性—人为脆弱性"的脆弱性评价指标体系,运用ArcGIS的空间叠加分析和脆弱性评价模型,开展拉萨河流域湿地脆弱性评价,并运用障碍度计算方法,分析了影响脆弱性的主要因素。研究结果表明,拉萨河流域湿地脆弱性范围为0.115 3~0.742 7,可分为轻度脆弱、中度脆弱和重度脆弱3个等级,其中,中度脆弱面积最大,占湿地总面积的59.59%,集中分布在河谷区和高山盆地区,主要类型为藏北嵩草(Kobresia lit?tledalei)沼泽化草甸、杂类草湿草甸和河流;其次是轻度脆弱湿地,占湿地总面积的38.25%,主要分布于河源区的嘉黎县;重度脆弱湿地仅占2.16%,分布在河源区的那曲县和河谷区的桑日县。轻度和重度脆弱湿地的类型都以藏北嵩草沼泽化草甸、河流和湖泊为主。影响湿地脆弱性的主要因素有9个,其重要性从高到低依次为年降水量、污染源、牲畜密度、人均牧业产值、植被盖度、人均耕地面积、污水排放量、猪的密度和高程,其中,年降水量、放牧和植被盖度是普遍存在的最重要的影响因素。降低湿地脆弱性的关键在于保障水源供给、控制污染和限制过度放牧。  相似文献   

4.
石钰  马恩朴  李同昇  芮旸 《地理科学进展》2017,36(11):1380-1390
降低洪灾社会脆弱度是缓解洪灾社会影响,建立洪水韧性的重要途径。本文从敏感性、适应性和暴露度3个方面构建微观尺度下的洪灾社会脆弱度评价指标体系,以安康市4个滨河村庄为例,运用基于熵权的综合指数法评价农户的洪灾社会脆弱度,并通过BP神经网络分析厘清评价指标与社会脆弱度之间的重要性关系,识别出洪灾社会脆弱度的主要影响因素。据此提出相应的对策建议作为降低农户洪灾社会脆弱度的实践依据。研究表明:①案例村调研样本中近一半的农户处于高社会脆弱度等级,由此推算,研究区有715个农户具有较高的洪灾社会脆弱度;②受访者健康状况、防汛信息渠道、避灾疏散方式、建筑质量、是否有病残人口、家庭收入多样性、5岁以下幼儿比重和60岁以上老年人比重是农户社会脆弱度的主要影响因素;③基于农户视角的洪灾社会脆弱度评价能准确地识别出脆弱度较高的农户,其结果在降低洪灾社会脆弱度方面更具有现实意义。  相似文献   

5.
青藏高原高寒区生态脆弱性评价   总被引:25,自引:3,他引:22  
于伯华  吕昌河 《地理研究》2011,30(12):2289-2295
在分析青藏高原高寒生态系统形成机制的基础上,构筑了3个层次、10个指标的脆弱性评价指标体系,系统评估了青藏高原生态脆弱性及其区域差异。研究结果表明:青藏高原中、重度以上脆弱区的面积较大,占区域总面积的74.79%。微度、轻度脆弱区主要分布在雅鲁藏布江大拐弯处、藏东南海拔3000m以下的山地、祁连山南坡的西北段和昆仑山北...  相似文献   

6.
采用GIS/RS的方法,以衡阳盆地为研究对象,构建由年降水量,少雨期干旱指数,坡度指数,土壤蓄水能力指数,植被覆盖指数,土地利用指数,水源可获得性指数和人类活动指数8个具体指标组成的基于GIS/RS方法的水资源脆弱性评价指标体系,对衡阳盆地农村水资源脆弱性进行定量评价。结果表明,衡阳盆地农村水资源系统脆弱度的空间分布总体表现为"南北低、中间高"的分布态势,北部的衡阳县、西部的祁东县和中部的衡南县是全区水资源脆弱性最高区域,而南部的常宁、耒阳和东北的衡东县是全区水资源脆弱性低值区。基于GIS/RS的水资源脆弱性评价方法与传统研究方法所得结果具有较好的相似性,但是,相对于传统的评价方法,GIS方法的评价结果更为细致和精确。  相似文献   

7.
邹君  郑文武  杨玉蓉 《地理科学》2014,34(8):1010-1017
采用GIS/RS的方法,以衡阳盆地为研究对象,构建由年降水量,少雨期干旱指数,坡度指数,土壤蓄水能力指数,植被覆盖指数,土地利用指数,水源可获得性指数和人类活动指数8个具体指标组成的基于GIS/RS方法的水资源脆弱性评价指标体系,对衡阳盆地农村水资源脆弱性进行定量评价。结果表明,衡阳盆地农村水资源系统脆弱度的空间分布总体表现为“南北低、中间高”的分布态势,北部的衡阳县、西部的祁东县和中部的衡南县是全区水资源脆弱性最高区域,而南部的常宁、耒阳和东北的衡东县是全区水资源脆弱性低值区。基于GIS/RS的水资源脆弱性评价方法与传统研究方法所得结果具有较好的相似性,但是,相对于传统的评价方法,GIS方法的评价结果更为细致和精确。  相似文献   

8.
区域生态环境脆弱性评价——以西藏"一江两河"地区为例   总被引:8,自引:2,他引:8  
陶和平  高攀  钟祥浩 《山地学报》2006,24(6):761-768
区域生态环境脆弱性评价是当前人类日益关心的问题之一。以西藏“一江两河”地区为例探讨区域生态环境脆弱性评价的方法和指标体系,建立了基于逆向指标测度的评价模型;同时选取1990年和2004年两个时段的数据进行分形,通过比较两个年份脆弱性评价结果可以看出自1990年“一江两河”开发区建立以来,随着区域经济活动的日益加强,区域生态环境脆弱性不断加剧,经济发展对环境的压力不断加大,区域未来持续发展受到威胁;从影响区域生态环境脆弱性因子看,1990年主要是自然因子,2004年人为因子占比重加大;从县域生态环境脆弱类型来看,自1990年以来“一江两河”地区高脆弱型县由4个增加到10个,县域经济发展越迅速,生态环境脆弱性变化越快,经济发展对区域生态环境脆弱性的影响显著。  相似文献   

9.
喀什地区生态脆弱性时空变化及驱动力分析   总被引:1,自引:0,他引:1  
生态脆弱性评价对认识、保护和改造生态环境,促进人与自然的和谐具有重要意义。为了合理利用生态资源,在开发建设中保护环境,故研究喀什地区生态脆弱性时空动态变化,为社会经济与生态保护和谐发展提供科学依据。基于“暴露度-敏感性-恢复力”的评价框架,从自然条件和人为活动方面选取13个指标构建2000-2016年喀什地区生态脆弱性评价指标体系,采用空间主成分方法分析喀什地区生态脆弱性等级的时空变化,并用地理探测器模型分析其驱动因素。结果表明:喀什地区北部区域生态脆弱性高于南部地区,高度脆弱区面积增多且集中在叶尔羌河中下游和喀什噶尔河下游,脆弱性呈现整体增加并向东北方向转移。2000-2016年喀什地区各县市生态脆弱性最低值在塔什库尔干塔吉克自治县,其次为喀什市和泽普县,均属于微度脆弱;最高的是莎车县、伽师县和巴楚县,属于高度脆弱地区。气温、地形和植被覆盖度因素造成喀什地区南北地带生态脆弱性空间分异;耕地面积、牲畜头数的增长引起景观破碎度变大,与区域恶劣的自然环境相互耦合加重了喀什地区的生态脆弱性,导致了喀什地区整体生态环境脆弱性向东北方向扩大。  相似文献   

10.
GIS支持下的吉林省西部生态环境脆弱态势评价研究   总被引:51,自引:9,他引:42  
黄方  刘湘南  张养贞 《地理科学》2003,23(1):95-100
由于自然条件的边缘性和过渡性,吉林省西部生态系统脆弱性和敏感性显著,其土地利用呈现农牧业交错的过渡特征,是全球和我国土地利用/覆被变化(LUCC)研究的典型区和首选区。基于GIS技术的空间分析功能,建立了基本评价因素的数字环境模型。应用主成分综合分析方法,提出了生态脆弱态势指数模型,获取了吉林省西部近15年生态环境脆弱性变化的空间分布规律,以期为区域生态环境的治理与建设提供依据。  相似文献   

11.
This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps,which is based on the spatial unit of township. Firstly,the spatial extent and charac-teristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly,for each of the township,six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion,cultivated land proportion,GDP per unit area,employment proportion of primary industry,net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly,the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coeffi-cient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".  相似文献   

12.
This paper quantitatively explores farmers’ vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and charac-teristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coeffi-cient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers’ livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the “five rivers”.  相似文献   

13.
This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and characteristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coefficient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".  相似文献   

14.
鄱阳湖湿地水位与洲滩淹露模型构建   总被引:5,自引:1,他引:4  
周霞  赵英时  梁文广 《地理研究》2009,28(6):1722-1730
水是控制湿地生态过程的一个重要因子,为了研究洲滩变化和湿地草洲生长发育规律,以便更好地监测和保护湿地生态系统,有必要研究鄱阳湖水体变化特征,分析湿地洲滩水位的时空动态变化和洲滩淹露规律。本文以鄱阳湖国家级自然保护区为例,在对鄱阳湖多年水位进行分析的基础上,利用多时相遥感影像和DEM提取湿地洲滩特征;并在GIS支持下综合考虑地形、鄱阳湖水位、湖泊缓冲区等因素,建立了湿地水位及洲滩淹露模型。时空验证结果表明,该模型具有较好的模拟效果,精度在85%以上。同时,本文根据研究区特点及水体在TM2、7波段的特征差异,构建了一个新的水体指数FDWI,提取水体精度达到98%,特别是对潮湿的沙地、植被和云有很好的区分能力。  相似文献   

15.
1736-1911年中国水灾多发区分布及空间迁移特征   总被引:1,自引:1,他引:0  
重建历史时期极端气候灾害的时空格局,对于认识当前和未来的灾害演变趋势,辨识灾害高风险区,更好地应对气候变化的挑战具有重要意义。本文基于《清史·灾赈志》中的历史水灾记录,以县级政区为单元,逐年提取了1736-1911年间中国境内的8582个水灾发生地点;利用核密度估计法对这一时期及3个特征时段(1736-1795、1796-1850和1851-1911年)的水灾空间分布特征进行分析,并结合风险理论框架讨论水灾多发区的分布及迁移的影响因素。主要结论如下:①1736-1911年水灾多发区主要集中在华北平原北部的海河、黄河下游,淮河下游,长江中下游三大平原及沿江地带,与现代分布格局存在一定差异;②华北平原北部是清代水灾最为集中的区域,这与当时华北平原降水偏多有关,而进入19世纪后,当地社会经济系统的高脆弱度也大大加重了灾情;特别是1855年黄河改道后,因政府应对不力,使得1851-1911年间鲁西北地区沿黄河下游河道出现一个条带状水灾多发区;③19世纪长江中下游地区水灾频次激增,其原因除梅雨变化导致的极端降水事件增多外,人类不合理的农业开发活动大量挤占湿地和水体,也在相当程度上增大了当地面对水灾时的物理暴露度。  相似文献   

16.
鄱阳湖水利枢纽工程水位调控方案的探讨   总被引:5,自引:0,他引:5  
齐述华  廖富强 《地理学报》2013,68(1):118-126
利用历史水文资料、越冬候鸟分布调查资料及基础地理数据等, 从鄱阳湖形态的历史演变和鄱阳湖越冬候鸟生境保护的角度, 探讨鄱阳湖水利枢纽工程的水位调控方案。研究得到以下结论和建议:(1) 在维持鄱阳湖形态不变的情况下, 为有效保护越冬候鸟生境不受水利枢纽工程水位调控的影响, 工程调控水位不宜超过12 m, 但由于低水位运行不利于水利枢纽工程工程效益的发挥, 而高水位运行不利于越冬候鸟栖息地的保护, 为调和工程效益和候鸟保护之间的矛盾, 建议实施适当退田还湖, 以促进鄱阳湖水利枢纽工程的规划实施;(2) 根据地形、越冬候鸟分布范围、圩堤内居民点分布以及圩堤内土地利用现状, 提出了约640 km2实施退田还湖范围;(3) 以退田还湖为前提, 按照“调枯不调洪”原则, 提出鄱阳湖水利枢纽工程的水位调控方案, 为工程的推进和实施提供参考。  相似文献   

17.
Flood is one of the major recurrent natural disasters faced by the state of Bihar in north India. In the present study the authors assess the severity of flood hazard in Bihar, using 128 decadal historical satellite datasets acquired during different flood magnitudes during 1998 to 2010. The satellite‐based observations have been analysed in conjunction with the hydrological data, for assessing the frequency of inundation, severity of flood hazard and cropped land under flood hazard. This study assesses the spatial distribution of flooding and creation of systematic flood hazard database, which can be analysed from a spatial dimension in GIS. It is observed that about 24.56 lakh ha of the state's area and about 15.85 lakh ha of the cropped area are vulnerable to flood hazard. North Bihar is more vulnerable to flooding; 8 of the 10 areas identified as worst flood‐affected districts lie in this region.  相似文献   

18.
Jiangxi Province in southeastern China contains Poyang Lake, the largest freshwater lake in China. Poyang Lake and the lower sections of the major Jiangxi rivers flowing into the lake often flood during the early summer months. Floodwater can be several meters above the surrounding lowlands during the most severe flood events. Levees at the margins of Poyang Lake and along the Jiangxi rivers provide flood protection for about 10 million people. The number of severe floods in this region has increased rapidly during the past few decades, resulting in catastrophic levee failures. The three factors likely responsible for the increasing frequency of severe floods are (1) land reclamation and levee construction and (2) lake sedimentation, both of which reduce lake volume, and (3) increasing Changjiang water level, which slows Poyang Lake drainage.  相似文献   

19.
Abstract

Jiangxi Province in southeastern China contains Poyang Lake, the largest freshwater lake in China. Poyang Lake and the lower sections of the major Jiangxi rivers flowing into the lake often flood during the early summer months. Floodwater can be several meters above the surrounding lowlands during the most severe flood events. Levees at the margins of Poyang Lake and along the Jiangxi rivers provide flood protection for about 10 million people. The number of severe floods in this region has increased rapidly during the past few decades, resulting in catastrophic levee failures. The three factors likely responsible for the increasing frequency of severe floods are (1) land reclamation and levee construction and (2) lake sedimentation, both of which reduce lake volume, and (3) increasing Changjiang water level, which slows Poyang Lake drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号