首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility of calcite in NaCl-H2O and in HCl-H2O fluids was measured using an extraction-quench hydrothermal apparatus. Experiments were conducted at 2 kbar, between 400° C and 600° C. Measurements in NaCl-H2O were conducted in two ways: 1) at constant pressure and NaCl concentration, as a function of temperature; and 2) at constant pressure and temperature, as a function of NaCl concentration. In both the NaCl-H2O and the HCl-H2O systems, the solubility of calcite increases with increasing chlorine concentrations. For example, the log calcium molality in equilibrium with calcite increases from –3.75 at 2 kbar and 500° C, in pure H2O to –3.10 at 2 kbar and 500° C at log NaCl molality=–1.67. At fixed pressure and NaCl molality, the solubility of calcite is almost constant from 400° C to 550° C, but increases somewhat at higher temperatures. The results can be used to determine the dominant calcium species in the experimental solutions as a function of NaCl concentration and to obtain values for the second dissociation constant of CaCl2(aq). At 2 kbar, 400° C, 500° C, and 600° C, we calculate values for the log of the dissociation constant of CaCl+ of –2.1, –3.2, and –4.3, respectively. The 400° C and 500° C values are consistent with those obtained by Frantz and Marshall (1982) using electrical conductance techniques. However, our 600° C value is 0.8 log units higher than that reported by Frantz and Marshall. The calcite solubilities in the NaCl-H2O and HCl-H2O systems are inconsistent with the solubilities of calcite in pure H2O reported by Walther and Long (1986). They are, however, consistent with the measurements of calcite solubilities in pure H2O presented in this study. These results allow for the calculation of the solubilities of calcium silicates and carbonates in fluids that contain CO2 and NaCl.  相似文献   

2.
Ward Chesworth 《Lithos》1971,4(3):219-229
Metamorphism in the Haliburton Highlands is of Miyashiro's low pressure, intermediate type. Physico-chemical conditions ranged from 3.5 to 7 kilobars total pressure and 580 to 700°C.  相似文献   

3.
The compositions of the cores and margins of the plagioclase phenocrysts in glassy acid rocks have been used to derive equilibration temperatures with their enclosing liquids using the Kudo-Weill geothermometer. The equilibration temperatures inferred from the compositions of the feldspar margins at 0.5 kilobars water pressure, or less, agree well with the temperatures obtained from the coexisting iron-titanium oxide microphenocrysts. These low water pressures are supported by the water fugacities deduced from the coexisting biotitemagnetite-sanidine assemblages. Acid magma represented by these rocks has a crystallization interval in excess of 100° C and liquidus temperatures above 900° C.  相似文献   

4.
The variation of silica activity with temperature and pressure for a variety of silica buffers (mineral pairs) allows P total to be calculated for a wide range of igneous rocks. The method also depends on evaluating ( log a SiO 2/P)T and ( log a SiO 2/ T)p; the former is equivalent to the partial molar volume of silica in silicate liquids, while the latter is estimated from published experiments on natural melts. Results for calc-alkaline rhyolites with phenocrysts of quartz, olivine or orthopyroxene, and iron-titanium oxides, range from 3.45 to 9.58 kilobars; a pantellerite is intermediate at 7.53 kilobars. At 1327° C, the silicate inclusions in diamond equilibrated at 63.5 kilobars, and the kimberlite crystallisation path intersected the baddeleyite-zircon reaction at 55.7 kilobars. Two trachybasalts would equilibrate with their lherzolite xenoliths at 17.0 and 21.0 kilobars at surface quenching temperatures. Potassic lavas such as orendites and ugandites at 1300° C would be in equilibrium with mantle olivine-orthropyroxene at 35.1 and 69.0 kilobars respectively. Basalts and basaltic-andesites could equilibrate (at 1100° C) with quartz at between 24.9 and 26.8 kilobars; quartz can therefore be considered a possible high pressure xenocryst in lavas with low Sr87/Sr86 ratios. Andesites will equilibrate at 1300° C with the mantle at a depth of 75 kilometres; at greater depths andesite will have a basaltic precursor. In general, lavas with low silica activity will equilibrate at greater depths in the mantle than those with higher silica activities.The Apollo 11 basalts contain minerals which suggest equilibration at 37 kilobars; the calculated quenching temperature is 1009° C, from which logf O 2 can be derived (–15.2) which in turn indicates approximately 0.10% Fe2O3 in these lavas.  相似文献   

5.
Large discrepancies are reported for the near-solidus, pressure-temperature location of the spinel to garnet lherzolite univariant curve in the system CaO-MgO-Al2O3-SiO2 (CMAS). Experimental data obtained previously from the piston-cylinder apparatus indicate interlaboratory pressure differences of up to 30% relative. To investigate this disparity—and because this reaction is pivotal for understanding upper mantle petrology—the phase boundary was located by means of an independent method. The reaction was studied via in situ X-ray diffraction techniques in a 6-8 type multianvil press. Pressure is determined by using MgO as an internal standard and is calculated from measured unit cell volume by using a newly developed high-temperature equation of state for MgO. Combinations of real-time and quenched-sample observations are used to bracket the phase transition. The transition between 1350 and 1500°C was reversed, and the reaction was further constrained from 1207 to 1545°C. Within this temperature range, the transition has an average dT/dP slope of ∼40 ± 10°C/kbar, consistent with several previous piston-cylinder studies. Extrapolation of our curve to 1575°C, an established temperature of the P-T invariant point, yields a pressure of 25.1 ± 1.2 kbar. We also obtained a real-time reversal of the quartz-coesite transition at 30.5 ± 2.3 kbar at 1357°C, which is about 2 to 4 kbar lower in pressure than previously determined in the piston-cylinder apparatus.  相似文献   

6.
Hydrothermal melting reactions in the system NaAlSiO4-SiO2-H2O have been extended into the coesite stability field using piston-cylinder apparatus, and the quartz-coesite transition has been bracketed at 735° (28.0±0.9 Kb) and at 800° C (28.15±0.9 Kb) in the presence of a silicate liquid phase; this provided favorable kinetic conditions. The results agree closely with previous piston-cylinder determinations employing a correction for pressure loss due to friction. Consideration of previous calibration and hysteresis experiments leads to the conclusion that despite its potential utility, the quartz-coesite transition can not be confidently used as a calibrant for piston-cylinder apparatus until the question of whether or not to apply a friction correction has been resolved.  相似文献   

7.
The calcite-aragonite transition,reinvestigated   总被引:6,自引:0,他引:6  
The calcite-aragonite equilibrium has been investigated between 200 and 600° C both in a carefully calibrated hydrothermal apparatus and in a piston-cylinder device of high precision. The equilibrium pressure is 5 kb at 180° C, 7 kb at 300° C, 9 kb at 400° C, and 11 kb at 480° C.The calcite-aragonite transition boundary which has been bracketed is continuously curved between 300 and 500° C and is more or less straight above and below this temperature range. It is shown that the calcite I-calcite II reaction is probably a second (and not a first) order transition.The experimental result shows that aragonite may already be formed out of calcite at a depth of 15 km if the temperature is not much higher than 100° C. The calcitearagonite and the albite-jadeite-quartz curves intersect at about 750° C and 20 kb. There is a P-T-field (up to 3.5 kb broad) where aragonite and albite coexist.  相似文献   

8.
The solubilities of macrocrystalline andalusite and kyanite have been measured in water between 400 and 550 °C and at pressures of 1–3 kilobars. Resulting data indicate that the phases are in equilibrium at 398 °C (1 kb,), 472 °C (2 kb) and 534 °C (3 kb). Due to the inherent difficulty of measuring small solubility differences errors in these temperatures could be as much as ±40 °C although experimental reproducibility suggests greater precision.  相似文献   

9.
Shales and graywackes were first metamorphosed at 650°C and then partially melted at 700 and 750°C at 2, 4, 6, and 8 kilobars in the presence of 0.75m NaCl−0.45m KCl and 0.225m CaCl2−0.750m NaCl solutions. In experiments with shales,KK+Na ratio in the decreases with increasing pressure at 650 and 700°C; however, at 750°C this ratio is equal to 0.5 at all pressures investigated. This suggests that melts at 700°C and at 2 to 8 kilobars pressure may be affected metasomatically whereas melts at 700°C and in the same pressure range will not. Melt composition produced in the shale-KClNaCl experiments is granite at 2, 4 and 6 kilobars pressure, whereas the melt compositions in the shale-CaCl2NaCl experiments range from quartz monzonite (2–5 kilobars) to granodiorite (above 5 kilobars). Experiments with graywacke-KClNaCl produced melts of trondhjemite composition at 2, 2.5, 4, 6, and 7.5 kilobars.

These results indicate that partial melting of crustal rocks such as metamorphosed shales and graywackes in the deeper parts of the crust can produce large volumes of granitic magmas ranging in composition from true granite to trondhjemite to quartz monzonite and granodiorite.  相似文献   


10.
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi3O6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P-T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.  相似文献   

11.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

12.
Analyses of coexisting garnets, clinopyroxenes and plagioclases from eclogites and high pressure granulitic gneisses in the Kristiansund area within the west Norwegian basal gneiss region are used to establish the P-T conditions for the metamorphic peak for these rocks. Based on the distribution of Fe and Mg between coexisting garnet and clinopyroxene in both eclogite and granulites, equilibrium temperatures are estimated to 750 °±50 ° C. Pressures are derived from the absence of orthopyroxenes in the granulites, and from the assemblage clinopyroxene +plagioclase+quartz present in the gneisses. Equilibrium pressures are estimated to 18.5±3.0 kilobars, and these equilibrium conditions are thus compatible with equilibrium conditions derived for both orthopyroxene-free and most orthopyroxene-bearing country-rock eclogites from adjacent areas.  相似文献   

13.
The quartz-coesite transition has been determined over the temperature range 600–1100° C by in Situ X-ray measurements with NaCl as internal pressure standard. An internally heated high-pressure X-ray apparatus (Belt-type) was used which is based on the principle developed by Freud and Sclar (1969). The obtained quartz-coesite equilibrium line may be represented by the equation P=31±1+0.0075 T where P is in kb and T in ° C.  相似文献   

14.
A detailed, systematic experimental and theoretical study was conducted to investigate the effect of pressure on equilibrium D/H fractionation between brucite (Mg(OH)2) and water at temperatures from 200 to 600°C and pressures up to 800 MPa. A fine-grained brucite was isotopically exchanged with excess amounts of water, and equilibrium D/H fractionation factors were calculated by means of the partial isotope exchange method. Our experiments unambiguously demonstrated that the D/H fractionation factor between brucite and water increased by 4.4 to 12.4‰ with increasing pressure to 300 or 800 MPa at all the temperatures investigated. The observed increases are linear with the density of water under experimental conditions. We calculated the pressure effects on the reduced partition function ratios (β-factor) of brucite (300-800 K and P ≤ 800 MPa) and water (400-600°C and P ≤ 100 MPa), employing a statistical-mechanical method similar to that developed by Kieffer (1982) and a simple thermodynamic method based on the molar volumes of normal and heavy waters, respectively. Our theoretical calculations showed that the reduced partition function ratio of brucite increases linearly with pressure at a given temperature (as much as 12.6‰ at 300 K and 800 MPa). The magnitude of the pressure effects rapidly decreases with increasing temperature. On the other hand, the β-factor of water decreases 4 to 5‰ with increasing pressure to 100 MPa at 400 to 600°C. Overall D/H isotope pressure effects combined from the separate calculations on brucite and water are in excellent agreement with the experimental results under the same temperature-pressure range. Our calculations also suggest that under the current experimental conditions, the magnitude of the isotope pressure effects is much larger on water than brucite. Thus, the observed pressure effects on D/H fractionation are common to other systems involving water. It is very likely that under some geologic conditions, pressure is an important variable in controlling D/H partitioning.  相似文献   

15.
The diffusivity of oxygen has been measured in three basaltic liquids from 1280 to 1450°C and 4 to 21 kilobars using a solid media piston-cylinder apparatus. The measurements were done by monitoring the reduction of ferric iron in previously oxidized spheres of basalt melt. The compositions studied were olivine nephelinite, alkali basalt, and 1921 Kilauea tholeiite.The isobaric temperature dependence of oxygen diffusivity is adequately described by Arrhenius relationships for the three liquids studied. Arrhenius activation energies were determined at 12 kilobars for olivine nephelinite (62± 6 kcal/mole) and tholeiite (51 ± 4 kcal/mole) and at 4, 12, and 20 kilobars for alkali basalt (70 ± 7, 86 ± 6, and 71 ± 14 kcal/mole, respectively). The Arrhenius parameters for the three compositions define a compensation law which is indistinguishable from those for oxygen diffusion in simple silicate melts (DUNN, 1982) and for divalent cation diffusion in basaltic melts (Hofmann, 1980). These results suggest that the principal species contributing to the total diffusivity of oxygen is the oxide anion (O2?).The isothermal pressure dependence of oxygen diffusion is complex and quite different from that observed for cationic diffusion in silicate melts. All three compositions show a sharp decrease in oxygen diffusivity at approximately the same pressure as the change in the liquidus phase from olivine to pyroxene, but otherwise the pressure dependence can be described by Arrhenius type equations. The equations yield negative activation volumes for the olivine nehpelinite and the alkali basalt. The activation volumes determined for the tholeiite are near zero at low pressure and positive at high pressure. A negative activation volume represents a decrease in the average size of the principal diffusing species.The results of this study are consistent with a melt model which includes both continuous changes in the relative proportions of the various anionic species in the melt with pressure and the occurrence of anionic disproportionation reactions within narrow pressure ranges.  相似文献   

16.
Summary Precambrian amphibolites and quartz-mica schists in the Saidapuram-Podalakuru area fall within the almandine-amphibolite facies of regional metamorphism. The analysed rocks represent metamorphosed basic igneous rocks. It is suggested that the quartz-muscovite-staurolite schists underwent metamorphism between 550° and 700° C at an average pressure of 7.2 kb; the quartz-muscovite (±biotite), hornblende-biotite (±garnet), and hornblende-garnet schists between 600°–700° C/7.5 kb; and the quartz-biotitekyanite schists between 650°–700° C/8 kb.
Petrologie der metamorphen Gesteine in Almandin-Amphibolit-Fazies im Gebiet von Saidapuram-Podalakuru, Distrikt Nellore, Andhra Pradesh, Indien
Zusammenfassung Präkambrische Amphibolite und Quarz-Glimmer-Schiefer im Gebiet von Saidapuram-Podalakuru gehören der Almandin-Amphibolit-Fazies an. Die analysierten Gesteine stellen metamorphe basische Erstarrungsgesteine dar. Die Quarz-Muskovit-Staurolith-Schiefer wurden bei 550°–700°C und einem durchschnittlichen Druck von 7,2 kb metamorph, die Quarz-Muskovit-(±Biotit-), die Hornblende-Biotit- (±Granat-) und die Hornblende-Granat-Schiefer bei 600°–700° C/7,5 kb, die Quarz-Cyanit-Schiefer bei 650°–700° C/8 kb.


With 6 Figures  相似文献   

17.
Diffusion of argon from two bronzite pyroxenes from the Ultramafic Zone of the Stillwater complex, Montana, has been measured by both a stepwise heating Ar release process and long term isothermal heating. Both pyroxenes contained excess Ar40. This amounted to at least 88% of the total radiogenic Ar40 in the minerals. The Ar release occurred by at least two mechanisms, and possibly a third. One of the most important, quantitatively, occurs between 600° and 1000° C and has an activation energy in excess of 72 kcal/gm-atom Ar. A second occurs above 1000° C. A small, but possibly significant, loss occurs rapidly below 600° C. Both of the major Ar release processes yield some excess Ar, and there is no single temperature range or mechanism which can be assigned unambiguously to the in-situ produced radiogenic Ar. Consequently, no K-Ar age can be obtained which gives the true age unambiguously.Ar36 tracer was used to conduct absorption experiments using the same bronzites. Runs were made at 800° and 1000° C at Ar pressures equal to total pressure of 1 atm. The absorption was found to be the same at the two temperatures and was 6 × 10–5 sccAr/Atmos.-gm px.It is suggested that the excess Ar in the bronzites was introduced at the time of their crystallization. The ambient Ar partial pressure in the melt at that time would have been 0.1 atm. Estimates of the Ar in the melt yield values of (3 to 80) × 10–6 sccAr/gm melt.  相似文献   

18.
Small dolomite marble lenses and bands occur in the vast Caledonian migmatite and gneiss area of NW Spitsbergen (Svalbard archipelago). The fine-banded marbles contain numerous assemblages of minerals: calcite, dolomite, olivine, clinohumite, diopside, amphibole, chlorite, spiner and phologopite. The coexistence of calcite + dolomite + olivine + chlorite + spinel over the entire area indicates metamorphic temperatures of 600 to 680° at an estimated pressure of 4 kilobars. A temperature of near 600°C for the peak of metamorphism is suggested by mineral assemblages at the southernmost locality, Jäderinfjellet. Calcite-dolomite geothermometry indicated 595°C at the same locality. The spatial distribution of the marble assemblages suggests that metamorphism occurred under nearly isothermal conditions over an area of at least 25 by 30 kilometres.  相似文献   

19.
In the attempt to study the composition and behaviour of metasomatically active solutions we have examined the kind of gaseous solutions which are formed by water in contact with the minerals of a granite under a pressure of 2000 bars at 600° C, and how these solutions behave within a temperature gradient at the same pressure. The temperature ranged from 620° to 180° C. The following minerals were considered: quartz, K-feldspar (adularia), plagioclase (andesine) and mixtures of quartz with adularia, quartz with andesine, quartz with adularia and andesine, quartz mixed with mierokline-perthite, oligoelase and biotite.All these minerals are completely dissolved by water under these physical conditions. The solutions always contain more silica than the minerals, if quartz is present. The dissolved components are transported within the temperature gradient. In the solutions, Ca derived from the anorthite-component of the plagioclase and Mg from the biotite form associations together with silica, which travel tohigher temperatures. There they crystallize in form of wollastonite and/or diopside. On the other hand, Na and K, AI and the Fe from the biotite and the largest part of the silica, travel from the 600° C-region tolower temperatures. There they crystallize in form of quartz, K-feldspar, albite, some muscovite and Mg-free biotite rich in Fe. In experiments of only short duration, metastable analcime instead of albite has been formed. In long lasting experiments of 10 weeks, a separation of Na and K was evident: Albite was formed in the temperature range 470° to 420° C, whereas K-feldspar (with some albite component) and Mg-free biotite crystallize together with quartz in a larger temperature range below 420° C; see figure 6.The different minerals from a mixture influence each other's solubility in such a way that the amount of both feldspars and quartz dissolved and transported within a unit of time is decreased. Compared with the amount obtained when quartz alone constitutes the solid phase, only 40 % of that amount is dissolved and transported when the quartz had been mixed with adularia; the value amounts to only 30% when it was mixed with andesine. When both feldspars. are present together with quartz, the amount of dissolved and transported quartz is decreased to about 20 % of the original amount; see table 7. However, in all cases the amount of dissolved quartz is larger than the sum of the dissolved feldspar substances. Thus, the solution formed from a mixture of quartz and feldspars which is transported to lower temperatures always contains more silica than the mineral mixture. The amount of adularia dissolved and transported is reduced by the presence of quartz to 1/6 of that amount furnished at 6000 C by adularia alone. Under the same conditions the amount of andesine is reduced to one half. — The amount of adularia transported per unit of time is nearly equal to the amount of plagioclase components if quartz is present. However, if no quartz is present, the proportion of dissolved and transported adularia to plagioclase-components is noticeably shifted in favour of adularia. This would be the case with syenite as the source for the solutions.In the attempt to produce skarns in a way closely related to nature, silica-rich solutions from a granite have been brought into contact with dolomite. The contact was situated at 600°, 570° and 500° C. With equal duration of the experiments, the results were similar. With different durations the following effect was observed: at the beginning, the silica-rich solution reacts with the dolomite under formation of forsterite, calcite and C02. When more materialis transported into the contact,region diopside (the mineral containing more silica) is formed from calcite, forsterite and additional silica. When the same metasomatically active solution meets a marble, (contact at 600° C) wollastonite is formed. In these metasomatic processes the partial pressure of C02 in the gasphase remained low under our experimental conditions.  相似文献   

20.
The univariant high-pressure reaction of aluminous enstatite and spinel to pyrope and forsterite in the MgO-Al2O3-SiO2 system has been determined in the temperature range 900 °–1100 °C by hydrothermal reversals in the piston-cylinder apparatus using the low-friction NaCl pressure medium. A mixture of synthetic minerals, including an enstatite with 6 wt% Al2O3, with product and reactant assemblages in nearly equal amounts, was the starting material. The equilibrium pressure of 19.3±0.3 kbar at 1000 ° C and average dP/dT slope of 8.0 bars/ ° C confirm the strong curvature of the equilibrium below 1200 ° C deduced by Obata (1976) from a theoretical study of experimental Al2O3 isopleths of enstatite in the garnet field. His prediction of an absolute minimum pressure near 18 kbar of the garnet peridotite assemblage in the ternary system is undoubtedly correct.Three reversed determinations of the equilibrium Al2O3 content of enstatite in the presence of spinel +forsterite were made at points adjacent to the univariant curve. The points are 5.5 wt% Al2O3 at 950 ° C and 20 kbar, 6.2 wt% at 1000 ° C and 20 kbar and 7.2 wt% at 1080 ° C and 20 kbar. These values are somewhat higher than given by the MacGregor (1974) isopleth set and quite close to those predicted by Fujii (1976) from experimental synthesis data at higher temperatures, using the Wood and Banno (1973) model of ideal solution of the Mg2Si2O6 and MgAl2SiO6 components in enstatite to reduce the data.All of the available spinel-field isopleth data can be systematized with the use of the ideal solution model. A value of H 0 of 9000 cal fits the reduced data well, and is in agreement with the calorimetrically determined value of 8500±1900 calories. An accurate calculation of the dP/dT slope of the univariant equilibrium at 1000 ° C based on calorimetry gives 7±2bars/ °C, also in good agreement with experiment. Thus, all of the available experimental and calorimetric data are consistent with the ideal-solution aluminous enstatite model.The dP/dT slopes of the spinel-field isopleths are too large to permit their use as an accurate geobarometric scale. They do have considerable potential as a thermometric indicator for certain natural peridotites, however. The southwestern Oregon overthrust peridotite masses of Cretaceous age have enstatite of 5.6 wt% Al2O3 with spinel of nearly 80 mole% MgAl2O4. The present reduced isopleth data directly give 930 ° C for the equilibration, assuming 12 kbar pressure. A first order correction based on ideal solution departures from the ternary system, as suggested by Stroh (1976) gives 1000 ° C. Thus, the high temperatures deduced by Medaris (1972) are confirmed. The pressure cannot be deduced independently from the pyroxene Al2O3 contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号