首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the star-disk electric circuit for a young stellar object (YSO) and calculate the expected torques on the star and the disk. We obtain the same disk magnetic field and star-disk torques as given by standard magnetohydrodynamic (MHD) analysis. We show how a short circuit in the star-disk electric circuit may produce a magnetically-driven jet flow from the inner edge of a disk surrounding a young star. An unsteady bipolar jet flow is produced that flows perpendicular to the disk plane. Jet speeds of order hundreds of kilometers per second are possible, while the outflow mass loss rate is proportional to the mass accretion rate and is a function of the disk inner radius relative to the disk co-rotation radius.  相似文献   

2.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

3.
Recent ultraviolet observations point out that there is hot, dense plasma associated with the optical jet in some T Tauri stars. In this contribution, cool MHD disk wind physics is reviewed by means of a self-similar analytical model to analyze whether hot (Te ? 80,000 K) and dense (ne ? 109 cm-3) plasma can be produced in disk winds. It is shown that these high densities can only be achieved at the base of the wind where the stellar X-rays radiation field is strong. The propagation of the X-rays radiation through the disk wind is analyzed: a cocoon of photoionized gas is generated around the star. However, it is difficult to foresee how temperatures as high as ~ 5 × 104 can be reached unless a significant fraction of the X-rays radiation is produced by magnetic reconnection at the boundary between the stellar magnetosphere and the accretion disk.  相似文献   

4.
We simulate the impact of a dipolar stellar magnetic field rooted in a classical T Tauri star on the accretion disk and the halo above using a 2.5D finite difference code. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura-Sunyaev-type eddy viscosity. The rotational shear between the star and the Keplerian disk causes the magnetic field to be wound up and stretched outwards, away from the star. Part of the field lines open and an outflow is launched. Direct disk disruption by the Lorentz force only occurs for sufficient field strength. For our model system with a solar-mass central star, an accretion rate of 10-7M⊙/a, and a viscosity parameter αSS=0.01, a field strength of 1 kG, measured at the poles on the surface of the star, was found insufficient for disk disruption.  相似文献   

5.
We present the results of time-dependent, numerical magnetohydrodynamic simulations of a realistic young stellar object outflow model with the addition of a disk-associated magnetic field. The outflow produced by the magnetic star-disk interaction consists of an episodic jet plus a wide-angle wind with an outflow speed comparable to that of the jet (100–200 km s-1). An initially vertical field of ? 0.1 Gauss, embedded in the disk, has little effect on the wind launching mechanism, but we show that it collimates the entire flow (jet + wide wind) at large (several AU) distances. The collimation does not depend on the polarity of the vertical field. We also discuss the possible origin of the disk-associated field.  相似文献   

6.
The wind interaction with the dusty environment of the classical T Tauri star RY Tau has been investigated. During two seasons from 2013 to 2015, we carried out a spectroscopicmonitoring of this star with simultaneous BV R photometry. A correlation between the stellar brightness and the radial velocity of the wind determined from the Hα and Na D line profiles has been found. The irregular stellar brightness variations are shown to be caused by extinction in a dusty disk wind at a distance of about 0.2 AU from the star. We hypothesize that the circumstellar extinction variations result from a cyclic rearrangement of the magnetosphere and coronal mass ejections, which affect the dusty disk wind near the inner boundary of the circumstellar disk.  相似文献   

7.
SS433是银河系内一个著名的高能天体,W50是它周围的超新星遗迹,自20世纪70年代末SS433的运动模型建立以来,已经受到了越来越多的关注,取得了丰富的多波段观测资料。但是,直到现在,关于这一系统的一些基本性质和参数还存在相当大的争论。该文介绍了关于SS433研究的某些新进展,主要包括SS433的运动模型和喷流的膨胀冷却模型,SS433的物质损失,各种时标的光变和喷流的结构,并对关于SS433研究的热点问题作了总结与展望。  相似文献   

8.
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/r ? 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.  相似文献   

9.
The presence of hot spots on the surface of T Tau attributable to mass accretion from the protoplanetary disk is shown to have virtually no effect on the accuracy of estimating the magnetic field strength for this star. By comparing the magnetic field strengths for T Tau at the photospheric level measured by various methods, we found that if the angle i at which we see T Tau does not exceed 10°, then the magnetic field of the star could be dipolar with the angle between the dipole axis and the rotation axis of the star ?85°. If, however, it later emerges that i > 10°, its magnetic field is essentially nondipolar and/or nonstationary.  相似文献   

10.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

11.
We explain in simple terms why a rotating and magnetized outflow forms a core with a jet and show numerical simulations which substantiate this argument. The outflow from a solar-type inefficient magnetic rotator is found to be very weakly collimated while the outflow from a ten times faster rotating YSO is shown to produce a tightly collimated jet. This gives rise to an evolutionary scenario for stellar outflows. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator.  相似文献   

12.
We present 2.5D time-dependent simulations of the non-linear evolution of non-relativistic outflows from the surface of Keplerian accretion discs. The gas is accelerated from the surface of the disc (which is a fixed platform in these simulations) into a cold corona in stable hydrostatic equilibrium. We explore the dependence of the resulting jet characteristics upon the mass loading of the winds. Two initial configurations of the threading disc magnetic field are studied: a potential field and a uniform vertical field configuration.
We show that the nature of the resulting highly collimated, jet-like outflows (steady or episodic) is determined by the mass load of the disc wind. The mass load controls the interplay between the collimating effects of the toroidal field and the kinetic energy density in the outflow. In this regard, we demonstrate that the onset of episodic behaviour of jets appears to be determined by the quantity     which compares the speed for a toroidal Alfvén wave to cross the diameter of the jet, with the flow speed v p along the jet. This quantity decreases with increasing load. For sufficiently large N (small mass loads), disturbances appear to grow leading to instabilities and shocks. Knots are then generated and the outflow becomes episodic. These effects are qualitatively independent of the initial magnetic configuration that we employed and are probably generic to a wide variety of magnetized accretion disc models.  相似文献   

13.
Star‐disc coupling is considered in numerical models where the stellar field is not an imposed perfect dipole, but instead a more irregular self‐adjusting dynamo‐generated field. Using axisymmetric simulations of the hydromagnetic mean‐field equations, it is shown that the resulting stellar field configuration is more complex, but significantly better suited for driving a stellar wind. In agreement with recent findings by a number of people, star‐disc coupling is less efficient in braking the star than previously thought. Moreover, stellar wind braking becomes equally important. In contrast to a perfect stellar dipole field, dynamo‐generated stellar fields favor field‐aligned accretion with considerably higher velocity at low latitudes, where the field is weaker and originating in the disc. Accretion is no longer nearly periodic (as it is in the case of a stellar dipole), but it is more irregular and episodic. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

15.
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond,   B ∼ 1015 G  , magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers  (∼1051–1052 erg s−1)  , the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers  (∼1050 erg s−1)  , the wind is subfast but still super-Alfvénic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≲30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated  (∼5–10°)  relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.  相似文献   

16.
Three-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks are presented. We investigate the outflow that arises from a magnetized accretion disk that is initially in hydrostatic balance with its surrounding cold corona. Our simulations show that jets maintain their long-term stability through a self-limiting process wherein the average Alfvénic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a `backbone' in which the Alfvén speed is sufficiently high to reduce the average jet Alfvénic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz `flute' modes (m ≥ 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the out flow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfvén speed and thereby reducing the Alfvénic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way.  相似文献   

17.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The structure of the corotating region, which forms an inner portion of a stellar magnetosphere, is reconsidered in a quasi-neutral case by taking into account the inertial effects of electrons as well as that of ions up to the first order in their mass ratio (δ=m?/m+). It is emphasized first that the magnetosphere is not globally equipotential even in the frame rotating with a central star (i.e. ?#0, where ? is the ‘non-Backus’ potential) due at least to the inertial effects of plasma particles. However, it is shown that the condition ?=0 is asymptotically recovered in the corotating region owing to the presence of the drift current which can be taken into account only when δ is not entirely neglected. This fact suggests that the deviation of the plasma motion in the outer magnetosphere from the corotation can be attributed to the non-zero ?. A globally self-consistent solution is obtained under this condition (?=0). In contrast with the solutions in the ‘force-free’ and the ‘mass-less-electron’ approximations, this solution has a disk structure in the corotation zone in which the plasma and the current density are concentrated to a thin disk near the magnetic equator. Owing to this sheet current in the disk the lines of force of the stellar magnetic field are modified to form a very elongated shape (the magnetodisk) if the plasma β-value is fairly large. Such a disk structure seems to be a common feature in the high β inner magnetospheres of various types of stars.  相似文献   

19.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   

20.
The forming star grows by mass inflow from the parent cloud core, mainly through the accretion disk. However, the core matter which has not yet contracted much is seriously disturbed by the activities of the forming star. We consider mass outflow and emission of ultraviolet radiation as such activities and determine the stellar mass as a function of the physical quantities of the parent cloud core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号