首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiative acceleration on iron inside stars may lead to an accumulation of this element in stellar internal layers. As discussed by several authors, this iron accumulation has many important consequences. It may lead to an extra convective zone, and in some cases it may help triggering stellar pulsations. However, the computations which have been done up to now ignore an important effect: the double-diffusive, or “thermohaline” convection induced by the inverse μ gradient. Detailed computations of all these processes have been introduced in the TGEC stellar evolution code. We show how thermohaline convection modifies the profiles of iron inside stars, with important consequences  相似文献   

2.
We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a “Noah’s Ark” milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.  相似文献   

3.
4.
Starspots     
Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars.  相似文献   

5.
In this paper we have studied a particular class of exact solutions of Einstein’s gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538–52, LMC X-4, SAX J1808.4?3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.  相似文献   

6.
We consider the ejection of one stellar system from the centre of another stellar system, representing both by Plummer models. Using the impulsive appoximation, we derive analytically the overall and differential energy changes and also the mass escape from the systems. We compare the results with those obtained for colliding systems.We find that the disruptive effects are considerably less in the case of ejection. If the ejected system is compact, it escapes with negligible disruptive effects.In the case of ejections, stars are also accelerated in the direction of motion of the system. Using a dimensionless parameter λ defined as the ratio of the squares of the stellar velocity perturbations in the direction of motion of the system and perpendicular to it, we find a significant difference between ejecting systems and colliding systems. In fast head-on collisions of spherical stellar systems, the systems become elongated in the direction perpendicular to the direction of motion whereas in the case of ejecting systems, they also become elongated in the direction of motion. These effects are more pronounced in the outer regions of the smaller system and the innner regions of the bigger system. These effects are enhanced if the ejected system is compact.  相似文献   

7.
We explore the gravitational influence of pressure-supported stellar systems on the internal density distribution of a gaseous environment. We conclude that compact massive star clusters with masses  ≳106 M  act as cloud condensation nuclei and are able to accrete gas recurrently from a warm interstellar medium which may cause further star formation events and account for multiple stellar populations in the most massive globular and nuclear star clusters. The same analytical arguments can be used to decide whether an arbitrary spherical stellar system is able to keep warm or hot interstellar material or not. These mass thresholds coincide with transition masses between pressure supported galaxies of different morphological types.  相似文献   

8.
A significant degree of mass segregation inconsistent with the effects of standard two-body relaxation has been observed in a number of young star clusters. In this paper we present the results of a survey of N-body simulations aimed at exploring the origin and the dynamical evolution of young mass-segregated star clusters. Our simulations show that large segregated clusters can form from the merger of small clumps that are either initially segregated or in which segregation is produced before the merger is complete; the large cluster produced at the end of the merger process inherits the progenitor clumps’ segregation. We show that, in a young mass-segregated cluster, the effect of early mass loss associated with stellar evolution is, in general, more destructive than for an unsegregated cluster with the same density profile, and leads to shorter lifetimes, a faster initial evolution towards less-concentrated structure and a faster flattening of the stellar initial mass function.  相似文献   

9.
We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main-sequence or a late-type low-mass companion, are discussed.  相似文献   

10.
11.
A stellar core becomes somewhat less massive due to neutrinos radiated away during its collapse in a neutron star or a black hole. The paper deals with the hydrodynamic motion of stellar envelope induced by such a mass loss. Depending on the structure of the outer stellar layers, the motion results either in ejection of an envelope with mass and energy proper for Nova outbursts; or nearly instantaneous excitation of strong pulsations of the star; or lastly in a slow slipping away of the whole stellar envelope. These phenomena are of importance when more powerful events, like supernova outbursts presumably associated with gravitational collapse, are absent. Such secondary indications of gravitational collapse are of special interest, since they may be a single observable manifestation (besides neutrinos and gravitational waves) of massive black hole formation.  相似文献   

12.
We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian‐rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.  相似文献   

13.
14.
We present grids of stellar models and their associated oscillation frequencies that have been used by the CoRoT Seismology Working Group during the scientific preparation of the CoRoT mission. The stellar models have been calculated with the CESAM stellar internal structure and evolution code while the oscillation frequencies have been obtained from the CESAM models by means of the ADIPLS adiabatic oscillation programme. The grids cover a range of masses, chemical compositions and evolutionary stages corresponding to those of the CoRoT primary targets. The stellar models and oscillation frequencies are available on line through the Evolution and Seismic Tools Activity (ESTA) web site.  相似文献   

15.
The orientations of the accretion disk of active galactic nuclei (AGN) and the stellar disk of its host galaxy are both determined by the angular momentum of their forming gas, but on very different physical environments and spatial scales. Here we show the evidence that the orientation of the stellar disk is correlated with the accretion disk by comparing the inclinations of the stellar disks of a large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ~ 30 degrees (Shen et al. 2010).  相似文献   

16.
The UV properties of old stellar populations have been subject of intense scrutiny from the late sixties, when the UV-upturn in early type galaxies was first discovered. Because of their proximity and relative simplicity, Galactic globular clusters (GGCs) are ideal local templates to understand how the integrated UV light is driven by hot stellar populations, primarily horizontal branch stars and their progeny. Our understanding of such stars is still plagued by theoretical uncertainties, which are partly due to the absence of an accurate, comprehensive, statistically representative homogeneous data-set. To move a step forward on this subject, we have combined the HST and GALEX capabilities and collected the largest data-base ever obtained for GGCs in UV. This data-base is best suited to provide insights on the HB second parameter problem and on the first stages of GCs formation and chemical evolution and to understand how they are linked to the observed properties of extragalactic systems.  相似文献   

17.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters (n≥200) than the large stellar velocity dispersion subsample.  相似文献   

18.
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5?C6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4?C5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet??s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5?C2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet?Cplanet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.  相似文献   

19.
Based on archival Hubble Space Telescope ACS/WFC images, we have performed stellar photometry for the metal-poor galaxy DDO 68. The apparent distributions of stars of different ages and stellarmetallicity determinations indicate that DDO68 is a systemof two galaxies that have different stellar metallicities (Z = 0.004 and 0.001) and are in the stage of interaction or merging. We have determined the distance to DDO 68, D = 12.0 ± 0.3 Mpc, which differs significantly from previous estimates of the distance to this system. A concentration of red giants is observed outside DDO 68. This can be interpreted as the periphery of a partially visible low-surface-brightness galaxy located at the same distance as DDO 68. Comparison of the constructed CM diagrams with theoretical isochrones from Bertelli et al. has allowed us to determine that the age of each galaxy is at least 10 Gyr.  相似文献   

20.
The effect of gas ejection on the structure and binding energy of newly formed stellar clusters is investigated. The star formation efficiency (SFE), necessary for forming a gravitationally bound stellar cluster, is determined.
Two sets of numerical N -body simulations are presented. As a first simplified approach we treat the residual gas as an external potential. The gas expulsion is approximated by reducing the gas mass to zero on a given time-scale, which is treated as a free parameter. In a second set of simulations we use smoothed particle hydrodynamics (SPH) to follow the dynamics of the outflowing residual gas self-consistently. We investigate cases where gas outflow is induced by an outwards propagating shock front and where the whole gas cloud is heated homogeneously, leading to ejection.
If the stars are in virial equilibrium with the gaseous environment initially, bound clusters only form in regions where the local SFE is larger than 50 per cent or where the gas expulsion time-scale is long compared with the dynamical time-scale. A small initial velocity dispersion of the stars leads to a compaction of the cluster during the expulsion phase and reduces the SFE needed to form bound clusters to less than 10 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号