首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explain in simple terms why a rotating and magnetized outflow forms a core with a jet and show numerical simulations which substantiate this argument. The outflow from a solar-type inefficient magnetic rotator is found to be very weakly collimated while the outflow from a ten times faster rotating YSO is shown to produce a tightly collimated jet. This gives rise to an evolutionary scenario for stellar outflows. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator.  相似文献   

2.
We have investigated the basic physical properties of the outflow that is created by a supersonic jet in a dense molecular cloud. We show that the dynamics of the interaction is strongly controlled by the rapid cooling of the post-shock gas at the head of the jet. The velocity of the gas is high in the vicinity of the jet head, but decreases rapidly as more material is swept-up. This type of outflow produces extremely high velocity clumps of post-shock gas which resemble the features seen in outflows. We also show that momentum transfer in bow shocks is more important than entrainment in high Mach number jets, as found in the protostellar environment.  相似文献   

3.
It is commonly accepted that stars form in molecular clouds by the gravitational collapse of dense gas. However, it is precisely not the infalling but the outflowing material that is primarily observed. Outflow motions prevail around both low and high mass young stellar objects. We present here results from a family of self-similar models that could possibly help to understand this paradox. The models take into account the heating of the central protostar for the deflection and acceleration of the gas. The models make room for all the ingredients observed around the central objects, i.e. molecular outflows, fast jets, accretion disks and infalling envelopes. We suggest that radiative heating and magnetic field may ultimately be the main energy sources driving outflows for both low and high mass stars. The models show that the ambient medium surrounding the jet is unhomogeneous in density, velocity, magnetic field. Consequently, we suggest that jets and outflows have a prehistory that is inprinted in their environment, and that this should have direct consequences on the setting of jet numerical simulations.  相似文献   

4.
If the observed relativistic plasma outflows in astrophysical jets are magnetically collimated and a single-component model is adopted, consisting of a wind-type outflow from a central object, then a problem arises with the inefficiency of magnetic self-collimation to collimate a sizeable portion of the mass and magnetic fluxes in the relativistic outflow from the central object. To solve this dilemma, we have applied the mechanism of magnetic collimation to a two-component model consisting of a relativistic wind-type outflow from a central source and a non-relativistic wind from a surrounding disc. By employing a numerical code for a direct numerical solution of the steady-state problem in the zone of super-fast magnetized flow, which allows us to perform a determination of the flow with shocks, it is shown that in this two-component model it is possible to collimate into cylindrical jets all the mass and magnetic fluxes that are available from the central source. In addition, it is shown that the collimation of the plasma in this system is usually accompanied by the formation of oblique shock fronts. The non-relativistic disc-wind not only plays the role of the jet collimator, but it also induces the formation of shocks as it collides with the initially radial inner relativistic wind and also as the outflow is reflected by the system axis. Another interesting feature of this process of magnetic collimation is a sequence of damped oscillations in the width of the jet.  相似文献   

5.
Young stars produce both molecular outflows and, at a later evolutionary stage, well-collimated optical jets. The simplest explanation is that the molecular outflows are driven byobscured optical jets, rather than directly, by a disk wind for example, but the optical jets appear to have too small a momentum flux. Recent statistical studies however show that the molecular flows must be quasi-stationary, which means that the dynamical lifetime is a gross underestimate of the true age. As a consequence much less thrust is required. We present recent observations of RNO 43, which has well-defined optical and molecular outflows lying close to the plane of the sky. Excellent agreement with the observations is obtained with a simple kinematic model for the molecular material, which supposes that it lies in a parabolic shell around the optical jet with the highest velocities at the working surface. Together with our modelling of the NGC2024 outflow, this is very strong evidence that molecular outflows are produced by prompt entrainment of molecular material in a neutral or weakly-ionized jet.  相似文献   

6.
Our new 21-arcsec resolution CO J  = 2 → 1 map of the L 43 dark cloud shows a poorly collimated molecular outflow, with little evidence for wings at velocities 10 km s−1. The outflow appears not to be currently driven by a jet: its structure can instead be modelled as a slowly expanding shell. The shell may be compressed either by a wide-angled wind catching up with an existing shell (as in the case of planetary nebulæ), or by the thermal pressure of a hot low-emissivity medium interior to the shell. The outflow is most probably in a late stage of evolution, and appears to be in the process of blowing away its molecular cloud. We also present a 45-arcsec resolution CO J  = 1 → 0 map of the whole molecular cloud, showing that the outflow structure is clearly visible even in the integrated intensity of this low excitation line, and suggesting that rapid mapping may prove useful as a way of finding regions of outflow activity. We also examine the immediate surroundings of the driving source with 450 μm imaging: this confirms that the outflow has already evacuated a bay in the vicinity of the young stellar object.  相似文献   

7.
We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope . A jet in the red outflow lobe (eastern lobe) is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe traced by CO observations. The redshifted jet also extends to a deeply embedded Class 0 source, Very Large Array (VLA) 2, confirming previous suggestions that it is the driving source of the outflow ( Gómez et al. 1994 ). The images show that the easternmost part of the redshifted jet exhibits what appear to be multiple changes of direction. To understand the redshifted jet morphology, we explore several mechanisms that could generate such apparent changes of direction. From this analysis, we conclude that the redshifted jet structure and morphology visible in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period ≈8000 yr) that lies mostly on the plane of the sky. It appears that the observed changes in the redshifted jet direction may be sufficient to account for a significant fraction of the broadening of the outflow lobe observed in the CO emission.  相似文献   

8.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

9.
We present the results of time-dependent, numerical magnetohydrodynamic simulations of a realistic young stellar object outflow model with the addition of a disk-associated magnetic field. The outflow produced by the magnetic star-disk interaction consists of an episodic jet plus a wide-angle wind with an outflow speed comparable to that of the jet (100–200 km s-1). An initially vertical field of ? 0.1 Gauss, embedded in the disk, has little effect on the wind launching mechanism, but we show that it collimates the entire flow (jet + wide wind) at large (several AU) distances. The collimation does not depend on the polarity of the vertical field. We also discuss the possible origin of the disk-associated field.  相似文献   

10.
Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow, which is powered by a protostar belonging to a protobinary system. Using the APEX telescope on Chajnantor, we mapped the BHR71 highly-collimated outflow in CO(3-2), and observed several bright points of the outflow in the molecular transitions CO(4-3), CO(7-6), 13CO(3-2), C18O(3-2), CH3OH(7-6) and H2CO(4-3). We use an LVG code to characterise the temperature enhancements in these regions. These observations are particularly interesting for investigating the interaction of collimated outflows with the ambient molecular cloud. In our CO(3-2) map, the second outflow driven by IRS2, which is the second source of the binary system, is completely revealed and shown to be bipolar. We also measure temperature enhancements in the lobes. The CO and methanol LVG modelling points to temperatures between 30 and 50 K in the two lobes. The methanol emission in the southern lobe bright knot is barely resolved with the APEX single-dish. ALMA will thus be a central tool to study the shock chemistry in these regions.  相似文献   

11.
A brief review is given of some results of our work on the construction of (I) steady and (II) time-dependent MHD models for nonrelativistic and relativistic astrophysical outflows and jets, analytically and numerically. The only available exact solutions for MHD outflows are those in separable coordinates, i.e., with the symmetry of radial or meridional self-similarity. Physically accepted solutions pass from the fast magnetosonic separatrix surface in order to satisfy MHD causality. An energetic criterion is outlined for selecting radially expanding winds from cylindrically expanding jets. Numerical simulations of magnetic self-collimation verify the conclusions of analytical steady solutions. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator. We also discuss the problem of shock formation during the magnetic collimation of wind-type outflows into jets.  相似文献   

12.
This paper describes a comparison of observations of the HH 30 jet/counterjet system and theoretical models of jets propagating in a strongly stratified medium. We find that the observed westward bending of the HH 30 jet and counterjet can be explained as the result of a plane-parallel pressure stratification of the surrounding environment. This model predicts specific properties for the kinematics of the outflow, that could be straight-forwardly checked with future spectroscopic and proper motion studies of HH 30.  相似文献   

13.
Near-infrared images in H2 line emission and submillimetre maps in CO J  = 3–2 emission illustrate the remarkable association between a molecular bow shock and the redshifted molecular outflow lobe in W75N. The flow lobe fits perfectly into the wake of the bow, as one would expect if the lobe represented swept-up gas. Indeed, these observations strongly support the 'bow shock' entrainment scenario for molecular outflows driven by young stars.   The characteristics of the bow shock and CO outflow lobe are compared with those of numerical simulations of jet-driven flows. These models successfully reproduce the bulge and limb-brightening in the CO outflow, although the model H2 bow exhibits more structure extending back along the flow axis. We also find that the size of the flow, the high mass fraction in the flow at low outflow velocities (low γ values) and the high CO/H2 luminosity ratio indicate that the system is evolved. We also predict a correlation, in evolved systems, between outflow age and the CO/H2 luminosity ratio.  相似文献   

14.
After briefly reviewing observations of molecular outflows from young stars, we discuss current ideas as to how they might be accelerated. Broadly speaking it is thought that such outflows represented either deflected accreted gas, or ambient material that has been pushed by a poorly collimated wind or accelerated by a highly collimated jet. Observations tend to favour the latter model, with jets being the clear favourite at least for the youngest flows. Jets from young stars may accelerate ambient gas either through the development of a boundary layer, where ambient and jet material are turbulently mixed, or at the working surface of the jet, i.e. the bow shock, via the prompt entrainment mechanism. Recently, we (Downes and Ray, 1999) have investigated, through simulations, the efficiency of prompt entrainment in jets from young stars as a means of accelerating ambient molecular gas without causing dissociation. Prompt entrainment was found to be very poor at transferring momentum from the jet to its surroundings in both the case of ``heavy' (not surprizingly) but also ``equi-density' (with respect to the ambient environment) jets. Moreover the transfer efficiency decreases with increasing density as the bow shock takes on a more aerodynamic shape. Models, however, in which jets are the ultimate prime movers, do have the advantage that they can reproduce several observational features of molecular outflows. In particular a power law relationship for mass versus velocity, similar to what is observed, is predicted by the simulations and the so-called ``Hubble Law' for molecular outflows is naturally explained. Pulsing of the jet, i.e. varying its velocity, is found to have little effect on the momentum transfer efficiency at least for the dynamically young jets we have studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
江治波  杨戟 《天文学进展》2000,18(4):320-335
分子氢的红外振动发射线是显现年轻星质量外流的重要谱线之一。自Gautier等人1976年在猎户座发现年轻星质量外流的分子氢发射开始,人们在银河系内几乎所有的恒星形成区都发现了这种线发射。研究表明,分子氢发射与年轻星周围的其它活动现象(如分子外流和光学喷流)之间有着非常密切的联系。红外和光学喷流代表了年轻星剧烈活动的两个侧面,是喷流与周围介质相互作用强弱不同的表现,这种作用还拖带周围介质,产生分子外流,光学、红外喷流和分子外流组成了恒星形成区壮观的景象,它们是恒星形成活动的重要标志。随着红外探测技术的飞速发展,对年轻星外流活动现象的观测越来越丰富的详细,使人们对这种现象的本质越来越了解。在20世纪90年代NICMOS等大阵列红外探测器投入使用后,红外成像观测有了长足的进步。目前已在70个左右的区域里发现了H2发射,这一数字还在迅速增加,今后的研究主要可能向两个方向发展。其一是高分辨观测,进一步了解H2发射的结构以及与光学喷流和分子外流之间的关系;其二是天观测,了解银河系内的恒星形成H2区发射的大尺度结构和恒星形成的统计分布规律。  相似文献   

16.
Three-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks are presented. We investigate the outflow that arises from a magnetized accretion disk that is initially in hydrostatic balance with its surrounding cold corona. Our simulations show that jets maintain their long-term stability through a self-limiting process wherein the average Alfvénic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a `backbone' in which the Alfvén speed is sufficiently high to reduce the average jet Alfvénic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz `flute' modes (m ≥ 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the out flow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfvén speed and thereby reducing the Alfvénic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way.  相似文献   

17.
In an attempt to identify the molecular shocks associated with the entrainment of ambient gas by collimated stellar winds from young stars, we have imaged a number of known molecular outflows in H2 v=1-0 S(1) and wide-band K. In each flow, the observed H2 features are closely associated with peaks in the CO outflow maps. We therefore suggest that the H2 results from shocks associated with the acceleration or entrainment of ambient, molecular gas. This molecular material may be accelerated either in a bow shock at the head of the flow, or along the length of the flow through a turbulent mixing layer.  相似文献   

18.
We discuss the star-disk electric circuit for a young stellar object (YSO) and calculate the expected torques on the star and the disk. We obtain the same disk magnetic field and star-disk torques as given by standard magnetohydrodynamic (MHD) analysis. We show how a short circuit in the star-disk electric circuit may produce a magnetically-driven jet flow from the inner edge of a disk surrounding a young star. An unsteady bipolar jet flow is produced that flows perpendicular to the disk plane. Jet speeds of order hundreds of kilometers per second are possible, while the outflow mass loss rate is proportional to the mass accretion rate and is a function of the disk inner radius relative to the disk co-rotation radius.  相似文献   

19.
We report on the results of a wide field near infrared survey for protostellar jets identified via their emission in the 2.12μm line of shock heated molecular hydrogen, done over a 1.2 square degree area in Orion A. We derive an evolutionary sequence for protostellar jets, based on the observed lenghts and H2 luminosities as well as the evolutionary stage and bolometric luminosity of their driving sources. Protostellar jets start from zero length, evolve quickly to parsec scale extents during the Class 0 phase, and shrink during the Class I and Class II phase. They are first very bright in H2 emission, and fade later on. This is indicative of strongly time-variably mass accretion onto the driving protostar, with a peak early on, and a subsequent continous decay of accretion activity. Finally, we present evidence for a molecular CO jet from a Class 0 object, supporting the idea that a very efficient outflow phase at very early evolutionary stages should produce very dense, molecular jets.  相似文献   

20.
The fine structure of the quasar 3C 345 in polarized emission at 7 mm and 2 cm has been investigated. The kinematics is shown to correspond to an anticentrifuge: the thermal plasma of the surrounding space accretes onto the disk, flows to the center, and is ejected in the form of a rotating bipolar outflow that carries away the excess angular momentum as it accumulates. The bipolar outflow consists of a high-velocity central jet surrounded by a low-velocity component. The low-velocity flows are the rotating hollow tubes ejected from the peripheral part of the disk with a diameter ~Ø1 = 2.2 pc and from the region Ø2 = 1 pc. The high-velocity jet with a diameter Ø3 = 0.2 pc is ejected from the central part of the disk, while the remnant falls onto the forming central body. The ejection velocity of the high-velocity flow is v ? 0.06c. At a distance up to ~1 pc, the jet accelerates to an apparent velocity v ~ 8c. Further out, uniform motion is observed within ~2 pc following which deceleration occurs. The jet structure corresponding to a conical diverging helix with an increasing pitch is determined by gasdynamic instability. The counterjet structure is a mirror reflection of the nearby part of the jet. The brightness temperature of the fragment of the high-velocity flow at the exit from the counterjet nozzle is T b ≈ (1012?1013) K. The disk inclined at an angle of 60° to the plane of the sky shadows the jet ejector region. Ring currents observed in the tangential directions as parallel chains of components are excited in the rotating flows. The magnetic fields of the rotating bipolar outflow and the disk are aligned and oriented along the rotation axis. The translational motions of the jet and counterjet are parallel and antiparallel to the magnetic field, which determines their acceleration or deceleration. The quasar core is surrounded by a thermal plasma. The sizes of the HII region reach ~30 pc. The electron density decreases with increasing distance from the center from N e ≈ 108 to ≈105 cm?3. The observed emission from the jet fragments at the exit from the nozzle is partially absorbed by the thermal plasma, is refracted with increasing distance—moves with an apparent superluminal velocity, and decelerates as it goes outside the HII region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号