首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Macro- and micronutrient availability in high-pH soil is a major constraint in crop production especially for the sensitive plants, such as kiwi fruit. A field study was conducted to investigate the multiyear effects of biosolid application on nutrient availability of agricultural soil and elemental sufficiency in kiwi fruit. Solar-dried biosolid applied at 0, 25, 50, 100 and 200 t ha?1 annually for successive 2 years. The considered soil properties included pH, EC, organic matter, N, P, K, macro–microelements, heavy metals and DTPA-extractable elements were determined. Results showed that biosolid addition significantly reduced to initial soil pH from 8.2 to 7.8 at higher application doses. Optimization of pH resulted in increased levels of soluble elements in all treatments studied. Biosolid application particularly increased Fe, Cu, Zn, Mn and B concentrations to sufficient levels. Among the other elements analyzed, were not significantly affected by biosolid application. Biosolid addition also increased soil DTPA-extractable elements, especially Cd, Cu, Mn, Pb and Zn. Significant increases in DTPA-extractable elements occurred for increasing application rates at 50, 100 and 200 t ha?1 compared to control. We conclude that municipal biosolid applied at an annual rate at or less than 200 t ha?1 can be safely used for kiwi fruit production on high-pH soils.  相似文献   

2.
Soil organic carbon (SOC) storage and erosion in South China at the regional scale in the past decades remains far from being understood. This paper calculated the SOC density, storage and erosion in 14 soil classes in Guangdong Province, South China, based on statistical data from the soil survey and soil erosion survey of Guangdong, which was performed in the 1990s. The purpose of this study is to understand the relationships between soil classes and SOC erosion at the regional scale. The results indicated that the SOC density in the soils of Guangdong varied from 12.7 to 144.9 Mg ha?1 over the entire profile and from 12.6 to 68.4 Mg ha?1 in the top 20-cm soil layer. The average area-weighted SOC density in the topsoil (0–20 cm) and the entire profile was 32 ± 3 and 86 ± 4 Mg ha?1, respectively. The total SOC storage was 1.27 ± 0.06 Pg, with 35.6 % (0.46 ± 0.04 Pg) located in the topsoil. The average area-weighted strength of the SOC erosion in the 1990s was 20.6 ± 0.8 Mg km?2 year?1. The results indicated that SOC erosion was strongly related to soil class.  相似文献   

3.
Past mining activities in Swaziland have left a legacy of abandoned mine sites (iron ore, asbestos, diamond and coal mine dumps), all of which have not been reclaimed. These sites were recently (2013) considered by the country’s wastewater treatment authorities as suitable places where biosolids can be applied, firstly as a biosolids disposal alternative and, secondly, as a strategy to accelerate mine soil remediation through phytostabilization. In order to understand the effects that this might have on mine soil conditions and microbiota, two (2) plant growth trials were conducted in biosolid-treated iron mine soils and one (1) trial on undisturbed soil, under greenhouse conditions, for twelve (12) weeks. According to the results obtained, the combination of biosolids and plants led to significant improvements (p < 0.05) in parameters related to soil fertility. Significant increases (p < 0.05) in alkaline phosphatase, β-glucosidase and urease soil enzyme activities were also observed. Copper and zinc were significantly (p < 0.05) increased (Cu from 17.00–50.13 mg kg?1; Zn from 7.59–96.03 mg kg?1); however, these sludge-derived metals did not affect enzyme activities. Improvements in soil physicochemical conditions, organic matter–metal complexes, effects of plants on metals and the essentiality of Cu and Zn to soil enzymes were thought to have masked the effects of metals. Increases in soil enzyme activities were considered to be indicative of improvements in the quality, fertility health and self-purification capacity of iron mine soils due to synergistic effects of biosolids and plants.  相似文献   

4.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   

5.
The main scope of this work is applying an aerobic composting model for remediation of petroleum hydrocarbon-contaminated soil. For this purpose, the reaction kinetics was integrated with the mass and energy balances over the composting system. Literature pilot scale data for bioremediation of diesel oil-contaminated soil was used for model validation. Comparisons of simulation results with experimental data for diesel concentration and oxygen concentration showed good agreement during the remediation process. With validated model for bioremediation of diesel oil-contaminated soil, the influence of amendment type, bulking agent, amendment/soil ratio, bulking agent/soil ratio, moisture content and airflow rate were investigated on diesel biodegradation. The simulation results showed that maximum degradation of diesel occurred in the presence of yard waste as amendment. Furthermore, addition of bulking agent (wood chips) increased the diesel degradation about 6 %. In presence of yard waste as amendment and wood chips as bulking agent, the optimal values for maximum remediation were amendment/soil ratio (2.5 kg kg?1), bulking agent/soil ratio (2.25 kg kg?1), initial moisture content (62.5 %) and airflow (0.520 mday?1 kgBVS?1).  相似文献   

6.
A pot experiment was conducted to monitor the dynamic response of photosynthesis of Amorpha fruticosa seedlings to different concentrations of petroleum-contaminated soils from April to September. The results showed that the photosynthetic rates, stomatal conductance and transpiration rate of seedlings significantly decreased in 5–20 g kg?1 petroleum-contaminated soil during the three given sampling period of July 31 (early), August 30 (mid-term) and September 29 (late). However, the intercellular CO2 concentration significantly increased in 10 g kg?1 contaminated soil, while declined in 20 g kg?1 contaminated soil during the early sampling period as well as in 20 g kg?1 contaminated soil during the late sampling period. The leaf relative water content of seedlings significantly increased in 20 g kg?1 contaminated soil during the early sampling period, while it dropped dramatically in 15–20 g kg?1 contaminated soil during the late sampling period. The contents of chlorophyll a, chlorophyll b and the total chlorophyll of seedlings showed a sharp decline during the three sampling periods in contaminated soil. Comprehensively, considering the negative effects of petroleum on the photosynthesis, growth performance and remediation effect on petroleum of A. fruticosa seedlings, this plant was tolerant of petroleum-contaminated soil and was potentially useful for the phytoremediation of petroleum-contaminated sites in northern Shaanxi, China.  相似文献   

7.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

8.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

9.
In semiarid Sahelian region, the dynamics of soil organic carbon (SOC) and water are key to sustainable land management. This work focuses on the behaviour of carbon. A total of 33 soil profiles in four polders, ranging from 10 to 65 years in age, were sampled, analysed (0–1 m), and matched with marsh soil profiles in recent sediments considered as reference (t0) for carbon stocks determination. SOC and soil inorganic carbon (SIC) stocks show a spatial variability between polders. SOC stocks were t0 200 ± 0.8; t60 183 ± 34; and t65 189 ± 1.1 MgC·ha?1, whereas the SIC stocks were negligible. These results show the highest stocks of soil carbon observed for this climatic region. The SOC stocks were also calculated for the equivalent soil mass at a defined depth (0–0.3 m); the corrected calculation of SOC stocks (Scorr) for 2450 Mg·ha?1 of equivalent soil mass is t0 64 ± 1.9, t60 59 ± 9.8, and t65 53 ± 2.2 MgC·ha?1; the stocks decrease by ?7.8% and ?17.2% from t0 to t60 and t65. Carbon was inherited from the pre-existing·marsh and the polders have conserved high stock values.  相似文献   

10.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   

11.
Bio-concentration of elements such as Mo, As, Se, Fe, Cu, Zn, Ni and Pb was analyzed in spring onion (Allium fistulosum L.) in three different locations of central Punjab, Pakistan. At location GW, relatively low level of hazardous elements was found in spring onion, suggesting that groundwater is a safe source of water for irrigating food crops. The pH of soil at wastewater irrigation was found less acidic (pH 7.4) than the other sites. The range of concentration in the different samples of spring onion was as follows: 6.15–8.16 mg kg?1 for Mo, 2.77–4.28 mg kg?1 for As, 0.395–0.705 mg kg?1 for Se, 36.73–48.17 mg kg?1 for Fe, 10.58–16.26 mg kg?1 for Cu, 28.87–39.79 mg kg?1 for Zn, 6.66–8.75 mg kg?1 for Ni and 4.33–6.09 mg kg?1 for Pb, respectively. High bio-concentration of Zn (15.37) from soil to spring onion was found at canal water irrigated location. The estimated daily intake of metal for spring onion was less, but the health risk index was higher than 1 for Mo, As, Cu, Pb and Ni, respectively. This was due to higher proportion of spring onion in diet, which consequently increased the health risk index for metals. Therefore, it is recommended to avoid growing vegetables in untreated urban and rural wastewater containing elevated amounts of metals.  相似文献   

12.
Three Gorges Reservoir in China was running since June 2003, and its impacts on soil erosion (SE) and soil conservation (SC) have attracted major public attentions. We quantified the soil conservation service of ecosystems in the Three Gorges Reservoir Area (TGRA) based on a GIS platform using the universal soil loss equation. We revealed the changes of spatial and temporal patterns of soil conservation (SC) and soil erosion (SE) after project construction as well as impact factors on local SE and SC. Results showed that the total amounts and mean capacity of soil conservation services in the TGRA were 15.38-billion t a?1 and 2134.73 t ha?1 a?1, respectively. Northeast reservoir area owned better services than the southwest, and the regions with a capacity of >5000 t ha?1 a?1 were primary located in mountain areas. An increasing trend in SC appeared in the TRGA and “with increasing SC” totaled 22690.5 km2 (38.9%), while the areas “with decreasing SC” amounted to 3460.4 km2 (5.9%) between 2000 and 2010. Moreover, the pattern of changing SC was continuous in this area. The spatial characteristics of soil conservation service in the TGRA were primarily affected by slope, climate and terrain features. In addition, the reforestation and/or forest protection would contribute to soil erosion control in the TGRA. The results revealed a great spatial heterogeneity of soil conservation service in this region, which may provide useful suggestions for land management, soil erosion control and ecosystem protection in the TGRA in China.  相似文献   

13.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

14.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

15.
Detailed analyses were conducted of human impact on juniper forest landscapes occurring within the Zarafshan Range (Pamir-Alay). Juniperus seravschanica and J. semiglobosa belong to forest-forming species in Central Asia. At present, juniper forests all over Tajikistan are seriously threatened as a result of excessive logging and cattle grazing. The aim of this paper is to present juniper forest transformation as a result of human activities as well as the diversity of soil properties in the organic and humus horizons in the altitudinal system of soil zonation. Three groups of phytocoenoses were distinguished: those with a dominant share of Juniperus seravschanica; those with a dominant share of J. semiglobosa; and mixed. Associations with Juniperus seravschanica and J. semiglobosa feature several variants of phytocoenoses with dominant species: Artemisia lehmanniana, A. dracunculus, Eremurus olgae, Festuca sulcata, Ligularia thomsonii, Stipa turkestanica, Thymus seravschanicus, and Ziziphora pamiroalaica. The collected soil samples differ in their granulometric composition. Gravelly cobble fractions >2 mm are dominant; the share of sandy particles <2 mm is much lower (about 10–20%). Fraction 0.5–0.05 attains 35% on average. The Corg content of the soil varied from 0.26 to 11.40% in the humus horizon (A) and from 4.3 to 25% in the organic (O). Similar relationships were reported in the case of Ntot concentration. A clear relationship can be observed between concentrations of Corg and Ntot. Soil pH varied, ranging from very low acidic (pH 5.5) to neutral (pH 8.5). The content of available P varied; high concentrations were noted in organic (O) (40.46–211 mg kg?1) and mixed horizons (OA) (2.61–119 mg kg?1). Maximum accumulations of Pavail (1739.6 mg kg?1) and Ptot (9696 mg kg?1) were observed at a site heavily affected by intense grazing. Concentrations of Mgavail varied from 116 to 964 mg kg?1. Most of the analysed soil profiles lacked an organic horizon; only thin humus occurred.  相似文献   

16.
Rhizosphere has different chemical and biological properties from bulk soils. Information about copper (Cu) desorption characteristics in the rhizosphere soils is limited. The objectives of this study were to determine Cu desorption characteristics and the correlation of its parameters with Cu extracted by DTPA-TEA, AB-DTPA and Mehlich 3 in bulk and rhizosphere amended soils with sewage sludge (10 g of sewage sludge was added to 1 kg soil) under greenhouse conditions in a rhizobox. The kinetics of Cu desorption in the rhizosphere and bulk was determined by successive extraction with DTPA-TEA in a period of 1 to 504 h at 25 ± 1 °C. The results showed that Cu extracted using several chemical extractants in the rhizosphere were significantly (P < 0.05) lower than in the bulk amended soils. In addition, Cu extracted using successive extraction in the rhizosphere were significantly (P < 0.01) lower than in the bulk soils. The best model for describing extraction data for the bulk and rhizosphere soils was the parabolic diffusion equation. Desorption kinetics of Cu conformed fairly well to first order and power function models. The results indicated that Cu diffusion rate in the wheat rhizosphere soils lower than in the bulk soils. Cu desorption rate in parabolic diffusion ranged from 0.326 to 0.580 mg kg?1 h?1/2 in the bulk soils, while it ranged from 0.282 to 0.490 mg kg?1 h?1/2 in the rhizosphere soils. Significant correlation (P < 0.05) between determine R values of parabolic diffusion and Cu desorption during 504 h with extracted Cu using DTPA-TEA, AB-DTPA and Mehlich 3 were found in the bulk and the rhizosphere soils. The results of this research revealed that Cu desorption characteristics in the wheat rhizosphere soils are quite different from bulk soils amended with sewage sludge.  相似文献   

17.
Soil salinity and sodicity are escalating problems worldwide, especially in arid and semiarid regions. A laboratory experiment was conducted using soil column to investigate leaching of soluble cations during reclamation process of a calcareous saline–sodic soil (CaCO3?=?20.7%, electrical conductivity (EC)?=?19.8 dS m?1, sodium absorption ratio (SAR)?=?32.2[meq L?1]0.5). The amendments consisted of control, cattle manure (50 g kg?1), pistachio residue (50 g kg?1), gypsum (5.2 g kg?1; equivalent of gypsum requirement), manure + gypsum and pistachio residue + gypsum, in three replicates which were mixed thoroughly with the soil, while sulfuric acid as an amendment was added to irrigation water. To reflect natural conditions, after incubation period, an intermittent irrigation method was employed every 30 days. The results showed that EC, SAR, and soluble cations of leachate for the first irrigation step were significantly higher than those of the subsequent leaching runs. Moreover, the concentration of removed soluble cations was lower for the control and gypsum-treated soils. It was found that among applied amendments, treatments containing cattle manure showed higher concentrations of sodium, calcium, and magnesium in the leachate, while due to pistachio residue application, further amount of potassium was removed out of soil column. The addition of pistachio residue resulted in the highest reduction in soil salinity and sodicity since the final EC and exchangeable sodium percentage dropped to 18.0% and 11.6% of their respective initial values, respectively. In the calcareous soil, solubility of gypsum found to be limited, in contrast, when it was added in conjunction with organic amendments, greater amounts of sodium were leached.  相似文献   

18.
Pollution from mining activities is a significant problem in several parts of the Republic of Macedonia. A geochemical study of the surficial sediments of Lake Kalimanci in the eastern part of the Republic of Macedonia was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing an enrichment factor (EF). The major and trace element contamination in surficial lake sediments was studied to assess the effects of metalliferous mining activities. The mean concentrations of major elements (wt%) Si 23.5, Al 7.9, Fe 6.6, Mg 1.3, Ca 3.8, Na 1.1, K 2.3, Ti 0.4, P 0.2, Mn 0.6 and trace elements ranged within Mo 1.0–4.6 mg kg?1, Cu 144.4–1,162 mg kg?1, Pb 1,874–16,300 mg kg?1, Zn 2,944–20,900 mg kg?1, Ni 21.7–79.3 mg kg?1, Cd 16.5–136 mg kg?1, Sb 0.6–3.6 mg kg?1, Bi 3.0–24,3 mg kg?1 and Ag 1.4–17.3 mg kg?1. The EF ranged within 0.12–590.3. Among which, Cd, Pb, Zn and As have extremely severe enrichment. The data indicate that trace elements had extremely high concentrations in Lake Kalimanci surficial sediments owing to the anthropogenic addition of contaminants.  相似文献   

19.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

20.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号