首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

2.
Much uncertainty exists in the phosphorus (P) cycle in the marshes of the intertidal zone. This study explored the P cycling in the two Suaeda salsa marshes [middle S. salsa marsh (MSM) and low S. salsa marsh (LSM)] of the Yellow River estuary during April 2008 to November 2009. Results showed seasonal fluctuations and vertical distributions of P in different S. salsa marsh soils, and variations in P content in different parts of plants due to water and salinity status. The N/P ratios of the different S. salsa were 9.87 ± 1.23 and 15.73 ± 1.77, respectively, indicating that plant growth in MSM was limited by N, while that in LSM was limited by both N and P. The S. salsa litter in MSM released P to the environment throughout the year, while that in LSM immobilized P from the environment at all times. The P absorption coefficients of S. salsa in MSM and LSM were very low (0.0010 and 0.0001, respectively), while the biological cycle coefficients were high (0.739 and 0.812, respectively). The P turnovers among compartments of MSM and LSM showed that the uptake amounts of roots were 0.4275 and 0.0469 g m?2 year?1 and the values of aboveground parts were 1.1702 and 0.1833 g m?2 year?1, the re-translocation quantities from aboveground parts to roots were 0.8544 and 0.1452 g m?2 year?1, the translocation amounts from roots to soil were 0.0137 and 0.0012 g m?2 year?1, the translocation quantities from aboveground living bodies to litter were 0.3157 and 0.0381 g m?2 year?1, and the annual return quantities from litter to soil were less than 0.0626 and ?0.0728 g m?2 year?1 (minus represented immobilization), respectively. P was an important limiting factor in S. salsa marshes, especially in LSM. S. salsa was seemingly well adapted to the low-nutrient condition and the vulnerable habitat, and the nutrient enrichment due to the import of N and P from the Yellow River estuary would be a potential threat to the S. salsa marshes.  相似文献   

3.
The objective of this study was to examine the variation of time and space and the effects of alpine meadow desertification, and the study area was selected at the Qinghai–Tibet Plateau of China. The sampling locations were categorized as the top, middle, bottom of the slope and flat in front of the slope, and the sites were classified as alpine meadow, light desertified land, moderate desertified land, serious desertified land, and very serious desertified land according to the level of alpine meadow desertification. This study examined spatial and temporal variability in soil organic carbon (SOC), total nitrogen (TN), pH, and soil bulk density due to wind erosion and documents the relationship between soil properties and desertification of alpine meadows. Desertification caused decreases to soil organic carbon and total nitrogen and increases to pH and soil bulk density. Soil properties were greatly affected by the level of alpine meadow desertification with the changes being attributed to overgrazing. The middle portion of slopes was identified as being the most susceptible to desertification. Carbon and nitrogen stocks were found to decrease as desertification progressed, the SOC stocks were 274.70, 273.81, 285.26, 196.20, and 144.36 g m?2 in the alpine meadow, light desertified land, moderate desertified land, serious desertified land and very serious desertified land, respectively; and the TN stocks were 27.23, 27.11, 28.35, 20.97, and 17.09 g m?2 at the top 30 cm soil layer, respectively. To alleviate desertification of alpine meadow, conservative grazing practices should be implemented.  相似文献   

4.
The Horqin Sandy Land is one of the most severely desertified regions in northern China. Plant communities and soil conditions at five stages of grassland desertification (potential, light, moderate, severe and very severe) were selected for the study of vegetation pattern variation relating to soil degradation. The results showed that vegetation cover, species richness and diversity, aboveground biomass (AGB), underground biomass, litter, soil organic carbon (C), total nitrogen (N), total phosphorus (P), electrical conductivity, very fine sand (0.1–0.05 mm) content and silt (0.05–0.002 mm) content decreased with the desertification development. Plant community succession presented that the palatable herbaceous plants gave place to the shrub species with asexual reproduction and sand pioneer plants. The decline of vegetation cover and AGB was positively related to the loss of soil organic C and total N with progressive desertification (P < 0.01). The multivariate statistical analysis showed that plant community distribution, species diversity and ecological dominance had the close relationship with the gradient of soil nutrients in the processes of grassland desertification. These results suggest that grassland desertification results in the variation of vegetation pattern which presents the different composition and structure of plant community highly influenced by the soil properties.  相似文献   

5.
Soil inorganic carbon (SIC) and organic carbon (SOC) levels can change with forest development, however, concurrent changes in soil carbon balance and their functional differences in regulating soil properties are unclear. Here, SIC, SOC, and other physicochemical properties of soil (N, alkali-hydrolyzed N, effective Si, electrical conductivity, pH, and bulk density) in 49 chronosequence plots of larch plantation forests were evaluated, by analyzing the concurrent changes in SIC and SOC storage during growth of plantation and the functional difference of these levels in maintaining soil sustainability. These soils had characteristically high SOC (15.34 kg m?2) and low SIC storage (83.38 g m?2 on average). Further, 28 of 30 linear regressions between SIC and SOC storage and larch growth parameters (age, tree size, and biomass density) were not statistically significant (p > 0.05). However, significant changes were observed in ratios of SIC and SOC with these growth parameters (between 0–40 cm and 40–80 cm, respectively; p < 0.05). These results were more useful for determining the changes in SIC and SOC vertical distribution than changes in storage. Moreover, larch growth generally decreased SIC and increased SOC. Linear correlation and multiple-regression analysis showed that the SIC influences soil acidity, whereas SOC affects soil nitrogen. This clearly indicates that larch growth could result in divergent changes in SIC and SOC levels, particularly in their vertical distribution; further, changes in SIC and SOC may variably affect soil physicochemical properties.  相似文献   

6.
The impact of erosion control geotextiles on the surface runoff from slopes is quite variable and depends strongly on site-specific conditions (soil characteristics, slope morphology, climate, etc.), as has been shown in several earlier studies. In addition, little is known about the proportion of runoff reduction that is caused by the geotextile and the proportion that is caused by soil characteristics. To shed more light on this issue, an experiment was carried out to test the impact of 500 g m?2 jute nets (J500) and 400 g m?2; 700 g m?2 coir nets (C400, C700) on the surface runoff from simulated rainfall of four different intensities (I 1 = 18.7; I 2 = 27.2; I 3 = 53.6; I 4 = 90.5 mm h?1). Data on runoff volume, peak discharge and time to peak discharge were collected from 40 simulated rainfall events. An impermeable “no-soil” subgrade was used to examine the impact of the geotextile on runoff without any influence of soil. All tested geotextiles significantly reduced runoff (volume, peak discharge) at all rainfall intensities, with the exception of C400 and C700 during simulated rainfall intensity I 4. J500 seemed to have the most effective runoff reduction performance at all rainfall intensities. In general, as the rainfall intensity increased, the effectiveness of the geotextiles decreased. Interesting behaviour was observed for J500 under simulated rainfall intensity I 4—the effectiveness of the geotextile increased with the duration of the rainfall.  相似文献   

7.
A pot experiment was conducted to monitor the dynamic response of photosynthesis of Amorpha fruticosa seedlings to different concentrations of petroleum-contaminated soils from April to September. The results showed that the photosynthetic rates, stomatal conductance and transpiration rate of seedlings significantly decreased in 5–20 g kg?1 petroleum-contaminated soil during the three given sampling period of July 31 (early), August 30 (mid-term) and September 29 (late). However, the intercellular CO2 concentration significantly increased in 10 g kg?1 contaminated soil, while declined in 20 g kg?1 contaminated soil during the early sampling period as well as in 20 g kg?1 contaminated soil during the late sampling period. The leaf relative water content of seedlings significantly increased in 20 g kg?1 contaminated soil during the early sampling period, while it dropped dramatically in 15–20 g kg?1 contaminated soil during the late sampling period. The contents of chlorophyll a, chlorophyll b and the total chlorophyll of seedlings showed a sharp decline during the three sampling periods in contaminated soil. Comprehensively, considering the negative effects of petroleum on the photosynthesis, growth performance and remediation effect on petroleum of A. fruticosa seedlings, this plant was tolerant of petroleum-contaminated soil and was potentially useful for the phytoremediation of petroleum-contaminated sites in northern Shaanxi, China.  相似文献   

8.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

9.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

10.
Soil salinity and sodicity are escalating problems worldwide, especially in arid and semiarid regions. A laboratory experiment was conducted using soil column to investigate leaching of soluble cations during reclamation process of a calcareous saline–sodic soil (CaCO3?=?20.7%, electrical conductivity (EC)?=?19.8 dS m?1, sodium absorption ratio (SAR)?=?32.2[meq L?1]0.5). The amendments consisted of control, cattle manure (50 g kg?1), pistachio residue (50 g kg?1), gypsum (5.2 g kg?1; equivalent of gypsum requirement), manure + gypsum and pistachio residue + gypsum, in three replicates which were mixed thoroughly with the soil, while sulfuric acid as an amendment was added to irrigation water. To reflect natural conditions, after incubation period, an intermittent irrigation method was employed every 30 days. The results showed that EC, SAR, and soluble cations of leachate for the first irrigation step were significantly higher than those of the subsequent leaching runs. Moreover, the concentration of removed soluble cations was lower for the control and gypsum-treated soils. It was found that among applied amendments, treatments containing cattle manure showed higher concentrations of sodium, calcium, and magnesium in the leachate, while due to pistachio residue application, further amount of potassium was removed out of soil column. The addition of pistachio residue resulted in the highest reduction in soil salinity and sodicity since the final EC and exchangeable sodium percentage dropped to 18.0% and 11.6% of their respective initial values, respectively. In the calcareous soil, solubility of gypsum found to be limited, in contrast, when it was added in conjunction with organic amendments, greater amounts of sodium were leached.  相似文献   

11.
Conversion of native desert to irrigation cropland often results in the changes of soil processes and properties. The objective of this study was to investigate the changes of soil nutrients and their spatial distribution characteristics of a newly reclaimed cropland at the initial stage of the conversion using statistical and geo-statistical methods. Soil samples were collected at regular intervals from a cropland of 0.24 ha, and their nutrient indicators determined. The mean contents of soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), and pH value in this newly reclaimed sandy cropland were averaged at 4.45 g kg?1, 0.49 g kg?1, 19.99 mg kg?1, 21.08 mg kg?1, 121.60 mg kg?1, and 8.98, respectively. The ranges were less than 20 m for the semivariogram of SOC, TN, and pH, but exceeded 20 m for AN, AP, and AK. The ratios of nugget-to-sill were less than 10 % for the semivariogram of SOC, TN, and pH, but exceeded 25 % for AN, AP, and AK. There were similar distribution characteristics for SOC, AN, and pH, with different sizes of patches present; such distribution patterns were related to the regular planting of orchard and the interval application of manures. There were big-sized patches in the distributions of AN, AP, and AK. Topography was the main factor causing the spatial heterogeneity of available N, P, K, and the 4 years (2001–2004) of cropping affected the distribution patterns of these nutrient variables. The conversion of native desert to irrigation cropland caused significant increases in soil nutrients, but their spatial distributions had large variations. This study identified the main factors affecting the spatial distribution of each soil nutrient variable, including the environment factors and anthropogenic management practices. There is a great potential to improve the productivity and soil fertility for the newly reclaimed sandy cropland, only if the appropriate and sustainable soil management practices are adopted.  相似文献   

12.
Benthic microalgae (BMA) inhabit the upper few centimeters of shelf sediments. This review summarizes the current information on BMA communities in the South Atlantic Bight (SAB) region of the Southeastern US continental shelf to provide insights into the potential role of these communities in the trophodynamics and biogeochemical cycling in shelf waters. Benthic irradiance is generally 2–6% of surface irradiance in the SAB region, providing sufficient light to support BMA primary production over 80–90% of the shelf width. BMA biomass greatly exceeds that of integrated phytoplankton biomass in the overlying water column on an areal basis. The SAB appears to have lower BMA biomass, but higher production than most temperate continental shelves. Annual production estimates average 101 and 89 g C m?2 year?1 for 5–20 and >?20 depth intervals, respectively. However, high variation in rates and biomass in time and space make comparisons between studies difficult. Submarine groundwater discharge (SGD) rather than the water column or in situ N regeneration from organic matter maybe the major “new” N source for BMA. The estimated supply of N (1.2 mmol N m?2 day?1) by SGD closely approximates the rates needed to support BMA primary production (3.1 to 1.6 mmol N m?2 day?1) in the sediments of the SAB. Identifying the source(s) of fixed N supporting the BMA community is essential for understanding the carbon dynamics and net ecosystem metabolism within the large area (76,000 km2) of the continental shelf in the SAB as well other temperate shelves worldwide.  相似文献   

13.
In recent years, the desertification of alpine-cold grasslands has become increasingly serious in the Qinghai–Tibet Plateau in China, but it has not received the same amount of attention as has desertification in (semi)arid areas. Little is thus known about the change in soil organic carbon (SOC) during alpine-cold grassland desertification. To quantify the impacts of desertification on vegetation, SOC and its active fractions in alpine-cold grasslands, areas of light desertified grassland, medium desertified grassland, heavy desertified grassland, serious desertified grassland, and nondesertified grassland were selected as experimental sites in the eastern Qinghai–Tibet Plateau in China. The species number, height and coverage of vegetation were surveyed, and the soil particle fractions, SOC and SOC active fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and labile organic carbon (LOC) were measured to a depth of 0–100 cm. The results showed that alpine-cold grassland desertification resulted in a significant reduction in vegetation cover, plant biomass, fine soil particles, SOC, DOC, LOC and MBC. The decreases in DOC, LOC and MBC were more rapid and apparent than were those in SOC, and the decrease in MBC was the most obvious among them. The rates of reduction in SOC concentrations accelerated as desertification progressed; most of the SOC was lost in the middle and later desertification stages, with lower losses during early desertification. The results indicate that active SOC fractions, particularly MBC, are more sensitive to desertification and can be used as sensitive indicators of desertification. Efforts to limit desertification and reduce SOC loss in alpine-cold grasslands should focus on early desertification stages and adopt strategies to prevent overgrazing and control the erosion of soil by wind.  相似文献   

14.
Monitoring general variability of soil attributes is a fundamental requirement from the point of view of understanding and predicting how ecosystems yield. In order to monitor impact of different land use types on the combination of morphological, clay mineralogical and physicochemical characterizes, 42 soil samples (0–30 cm) were described and analyzed. Soil samples belonging to Cambisols and Vertisols reference soil groups collected from three neighboring land use types included cropland (under long-term continuous cultivation), grassland, and forestland. The soils were characterized by high pH (mean of 7.1–7.5) and calcium carbonate equivalent (CCE) (mean of 35–97 g kg?1) in the three land use types. The weakening in soil structure, hardening of consistency, and lighting of soil color occurred for the cropland under comparable condition with grassland and forest. Changes in land use types produced a remarkable change in the XRD patterns of clay minerals containing illite and smectite due the dynamic and removal of potassium. Continuous cultivation resulted in an increase in sand content up to 35 % while silt and clay content decreased up to 22 and 18 %, respectively, as compared to the adjoining grassland and forest mainly as a result of the difference of dynamic alterational and erosional process in the different land use. Long-term cultivation caused a negative and degradative aspects on soil heath as is manifested by the increasing in soil pH (a rise of 0.3–0.46 unit), electrical conductivity (EC) (a rise of 1.78–5.5 times), sodium absorption ration (SAR) (a rise of 10–51 %), exchangeable sodium percentage (ESP) (a rise of 3–46 %), and the decrease in soil organic C (a drop of 12–41 %), along with soil fertility attributes. Overall, the general distribution of soil organic C, total N, available P and K, cation exchange capacity (CEC), and exchangeable cations (Ca, Mg, and K) followed the order: forestland > grassland > cropland. The general distribution of EC, SAR, ESP, and exchangeable Na, however, followed the order: cropland > grassland > forestland. Soil quality index (SQI), calculated based on some physicochemical properties, specified that cultivation led to a negative effect in SQI for both Cambisols (a drop of 10–17 %) and Vertisols (a drop of 17 %) as compared to those of under grassland and forestland.  相似文献   

15.
Phosphorus is an essential and common limiting element for plants. Phosphorus losses from agricultural production systems are known to contribute to accelerated eutrophication of natural waters. In this study, soil available phosphorus (SAP) content and SAP density were estimated based on a soil survey of a small watershed in the Dan River, China, and the spatial heterogeneity of SAP distribution and the impacts of land-use types, elevation, slope and aspect on SAP were assessed. Field sampling was carried out based on a 100 m × 100 m grid system overlaid on the topographic map of the study area, and samples were collected in three soil layers to a depth of 40 cm. A total of 190 sites were sampled, and 539 soil samples were collected. The results showed that classical kriging could successfully interpolate SAP content in the watershed. SAP content showed a downward trend with the increase in soil depth and the extent of SAP variability in the three soil layer is moderate. There were significant differences among the three soil layers (P < 0.01). The land use had a great impact on the SAP content. ANOVA indicated that the spatial variation of SAP contents under different land-use types was significant (P < 0.01). The SAP density of different land-use types followed the order of cropland > forestland > grassland. The mean SAP density of cropland, forestland and grassland at a depth of 0–40 cm was 4.28, 3.74 and 2.81 g/m2, respectively. SAP and topographic factors showed that SAP content increased with decreasing altitude and slope gradient. The soil bulk density played a very important role in the assessment of SAP density. In conclusion, the soils in the source area of the middle Dan River would reduce SAP with conversions from cropland to forest or grassland.  相似文献   

16.
We developed a synthesis using diverse monitoring and modeling data for Mattawoman Creek, Maryland, USA to examine responses of this tidal freshwater tributary of the Potomac River estuary to a sharp reduction in point-source nutrient loading rate. Oligotrophication of these systems is not well understood; questions concerning recovery pathways, threshold responses, and lag times remain to be clarified and eventually generalized for application to other systems. Prior to load reductions Mattawoman Creek was eutrophic with poor water clarity (Secchi depth <0.5 m), no submerged aquatic vegetation (SAV), and large algal stocks (50–100 μg L?1 chlorophyll-a). A substantial modification to a wastewater treatment plant reduced annual average nitrogen (N) loads from 30 to 12 g N m?2 year?1 and phosphorus (P) loads from 3.7 to 1.6 g P m?2 year?1. Load reductions for both N and P were initiated in 1991 and completed by 1995. There was no trend in diffuse N and P loads between 1985 and 2010. Following nutrient load reduction, NO2?+?NO3 and chlorophyll-a decreased and Secchi depth and SAV coverage and density increased with initial response lag times of one, four, three, one, and one year, respectively. A preliminary N budget was developed and indicated the following: diffuse sources currently dominate N inputs, estimates of long-term burial and denitrification were not large enough to balance the budget, sediment recycling of NH4 was the single largest term in the budget, SAV uptake of N from sediments and water provided a modest seasonal-scale N sink, and the creek system acted as an N sink for imported Potomac River nitrogen. Finally, using a comparative approach utilizing data from other shallow, low-salinity Chesapeake Bay ecosystems, strong relationships were found between N loading and algal biomass and between algal biomass and water clarity, two key water quality variables used as indices of restoration in Chesapeake Bay.  相似文献   

17.
Human-driven dynamics of land cover types in the Tarim Basin are able to affect potential dust source regions and provide particles for dust storms. Analyses about dynamics of potential dust source regions are useful for understanding the effects of human activities on the fragile ecosystem in the extremely arid zone and also provide scientific evidence for the rational land development in the future. This paper therefore selected the Tarim Basin, NW China, as a representative study area to reveal spatiotemporal dynamics of land cover and their impacts on potential dust source regions. The results showed that farmland, desert and forest increased by 28.63, 0.64 and 29.27%, while grassland decreased by 10.29% during 1990–2010. The largest reclamation, grassland loss and desertification were 639.17 × 103, 2350.42 × 103 and 1605.86 × 103 ha during 1995–2000. The relationship between reclamation and grassland loss was a positive correlation, while a highly positive correlation was 0.993 between the desertification and grassland loss at different stages. The most serious dust source region was the desertification during 1990–2010 (1614.58 thousand ha), and the serious region was stable desert (40,631.21 thousand ha). The area of the medium and low dust source region was 499.08 × 103 and 2667.27 × 103 ha. Dramatic reclamation resulted in the desertification by destroying natural vegetation and breaking the balance of water allocation in various regions.  相似文献   

18.
We explored environmental factors influencing soil pyrite formation within different wetland regions of Everglades National Park. Within the Shark River Slough (SRS) region, soils had higher organic matter (62.65 ± 1.88 %) and lower bulk density (0.19 ± 0.01 g cm?3) than soils within Taylor Slough (TS; 14.35 ± 0.82 % and 0.45 ± 0.01 g cm?3, respectively), Panhandle (Ph; 15.82 ± 1.37 % and 0.34 ± 0.009 g cm?3, respectively), and Florida Bay (FB; 5.63 ± 0.19 % and 0.73 ± 0.02 g cm?3, respectively) regions. Total reactive sulfide and extractable iron (Fe) generally were greatest in soils from the SRS region, and the degree of pyritization (DOP) was higher in soils from both SRS (0.62 ± 0.02) and FB (0.52 ± 0.03) regions relative to TS and Ph regions (0.30 ± 0.02 and 0.31 ± 0.02, respectively). Each region, however, had different potential limits to pyrite formation, with SRS being Fe and sulfide limited and FB being Fe and organic matter limited. Due to the calcium-rich soils of TS and Ph regions, DOP was relatively suppressed. Annual water flow volume was positively correlated with soil DOP. Soil DOP also varied in relation to distance from water management features and soil percent organic matter. We demonstrate the potential use of soil DOP as a proxy for soil oxidation state, thereby facilitating comparisons of wetland soils under different flooding regimes, e.g., spatially or between wet years versus dry years. Despite its low total abundance, Fe plays an important role in sulfur dynamics and other biogeochemical cycles that characterize wetland soils of the Florida coastal Everglades.  相似文献   

19.
Soil total porosity is, rather than measured by water desorption method, more often estimated from bulk density (BD) and assumed particle density. Measured and estimated total porosities of even kaolinitic tropical soils (which have low tendency to expand upon wetting) usually differ by an extent that depends on soil structural stability, but such differences are scarcely documented. Seventy samples of coarse-textured soils under different fallow- and cultivation-management systems in the southeastern region of Nigeria were analyzed for texture, mean-weight diameter (MWD) of aggregates, BD and organic matter (OM) concentration. Soil total porosities measured by water desorption method were compared with those estimated from BDs (with particle density fixed at 2.70 g cm?3), after grouping the soils by structural stability, assessed by OM/(silt + clay) for 50 of the samples from fallowed plots (BD > 1.48 g cm?3) and MWD for the rest from cultivated plots (BD < 1.48 g cm?3). The fallowed plots showed a wider stability range than the cultivated plots. Irrespective of land use, structural stability tended to increase with decreasing soil BD. Measured total porosities were consistently higher than their estimated counterparts, with the differences closing up with increasing soil structural stability up till a mean BD of 1.41 ± 0.05 g cm?3 (corresponding to MWD of 2.66 ± 0.12 mm), beyond which the trend reversed. These results suggest that, as the soil structural stability increases, soil particle density decreases while entrapped air and transitory drainage of saturated samples at weighing increase. Estimating total porosity with a fixed particle density of 2.70 g cm?3 appears suitable only in highly stable soils, with BD of ≤1.40 ± 0.08 g cm?3 and/or MWD of ≥2.92 ± 0.05 mm [corresponding to OM/(silt + clay) of ≥16.38 ± 0.28 %].  相似文献   

20.
Phosphorus (P) cycling in mangroves plays an important role in productivity but the magnitude of atmospheric input in the mangrove P budget is still uncertain. This study applied a box model approach to assess P budget in the Indian Sundarban, the world’s largest mangrove ecosystem for conceptual understanding of P cycling and for better representation of transport and transformation of P within the mangrove ecosystem. The P content in the sediment (0.19–0.67 μg g?1) was found much below its maximum retention capacity (322 μg g?1) and was lower than the mean marine sediment (669 μg g?1). The C:N and C:P ratios were correlated (r 2 = 0.66, P < 0.01) and the major fraction of available P was recycled within the organic structure of mangrove ecosystem, thus maintaining productivity through conservation strategies. Atmospheric input accounted for 56.7% of total P input (16.06 Gg year?1) and 50% of total P output (14.7 Gg year?1) was attributed to plant uptake. Budget closing or unaccounted P (1.36 Gg) was only 8.5% of the total input. Two feedback pathways, i.e., input of P from dust fallout and biochemical mineralization of organic matter, significantly affected P availability. The findings of the study suggest that atmospheric deposition is of major importance as a natural and/or anthropogenic forcing function in the Sundarban mangrove system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号