首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对重金属和辐射污染的土壤和地下水的微生物修复   总被引:1,自引:0,他引:1  
由重金属和辐射产生的环境污染在世界范围内产生了一系列问题.利用特殊的微生物如金属还原和耐金属细菌对环境中的金属和辐射污染进行处理具有非常好的前景.现场的生物修复的成功应用将对清除污染环境中的重金属和辐射提供潜在方法.最近的研究还关注于了解在微生物群体内重金属和辐射对微生物的作用.生物毯和生物膜是在生物修复中具有代表性的两种微生物群落的机能.金属的种类和价态变化、转移过程以及微生物代谢作用是对金属和辐射生物修复的三种重要的组成部分.结合以上三方面,可以更好的了解自然中的微生物和生物修复过程之间的关系.  相似文献   

2.
菌根真菌对土壤中有机污染物的修复研究   总被引:12,自引:0,他引:12  
菌根真菌是真菌与植物之间特殊的联合共生体,利用菌根真菌修复土壤,尤其是修复有机污染物污染的土壤,正成为一个崭新的研究方向。菌根真菌是土壤真菌的一种,但与土壤中放线菌和细菌等微生物相比,其对土壤中有机污染物具有更大的忍耐能力,并且能利用土壤中大多数持久性有机污染物作为碳源来获取能量。综述了近20年菌根真菌对土壤有机污染物降解研究,讨论了菌根真菌降解土壤有机污染物的可能机制,并探讨了从引入固氮菌、外源细菌两个方面对菌根调控以提高修复效果的可能性,为进一步研究菌根真菌生物降解土壤中持久性有机污染物、利用菌根植物修复有机污染土壤提供信息。  相似文献   

3.
Chlorinated hydrocarbons can cause serious environmental and human health problems as a result of their bioaccumulation, persistence and toxicity. Improper disposal practices or accidental spills of these compounds have made them common contaminants of soil and groundwater. Bioremediation is a promising technology for remediation of sites contaminated with chlorinated hydrocarbons. However, sites co-contaminated with heavy metal pollutants can be a problem since heavy metals can adversely affect potentially important biodegradation processes of the microorganisms. These effects include extended acclimation periods, reduced biodegradation rates, and failure of target compound biodegradation. Remediation of sites co-contaminated with chlorinated organic compounds and toxic metals is challenging, as the two components often must be treated differently. Recent approaches to increasing biodegradation of organic compounds in the presence of heavy metals include the use of dual bioaugmentation; involving the utilization of heavy metal-resistant bacteria in conjunction with an organic-degrading bacterium. The use of zero-valent irons as a novel reductant, cyclodextrin as a complexing agent, renewable agricultural biosorbents as adsorbents, biosurfactants that act as chelators of the co-contaminants and phytoremediation approaches that utilize plants for the remediation of organic and inorganic compounds have also been reported. This review provides an overview of the problems associated with co-contamination of sites with chlorinated organics and heavy metals, the current strategies being employed to remediate such sites and the challenges involved.  相似文献   

4.
Aerobic methanotrophy at ancient marine methane seeps: A synthesis   总被引:2,自引:0,他引:2  
The molecular fingerprints of the chemosynthesis based microbial communities at methane seeps tend to be extremely well preserved in authigenic carbonates. The key process at seeps is the anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulphate reducing bacteria. Besides the occurrence of 13C depleted isoprenoids and n-alkyl chains derived from methanotrophic archaea and sulphate reducing bacteria, respectively, 13C depleted triterpenoids have been reported from a number of seep deposits. In order to evaluate the significance of these apparently non-AOM related molecular fossils, the biomarker inventories of one Campanian and two Miocene methane seep limestones are compared. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. Structural and carbon isotope data reveal that aerobic methanotrophy was common at some ancient methane seeps as well. The Miocene Marmorito limestone contains abundant 3β-methylated hopanoids (δ13C: −100‰). Most likely, 3β-methylated hopanepolyols, prevailing in aerobic methanotrophs, were the precursor lipids of these compounds. A series of isotopically depleted 4-methylated steranes (lanostanes; δ13C: −80‰ to −70‰) and similarly isotopically depleted 17β(H),21β(H)-32-hopanoic acid in the Miocene Pietralunga seep limestone also are derived probably from aerobic methanotrophs. Lanosterol, which is known to be produced by aerobic methanotrophs, is the most likely precursor of 4-methylated steranes. Less obvious is the origin of 8,14-secohexahydrobenzohopanes (δ13C: −110‰ to −107‰) in Late Cretaceous seep limestones. These hopanoids probably reflect early degradational products of precursor lipids locally produced by seep endemic aerobic methanotrophs.  相似文献   

5.
曾远  罗立强 《岩矿测试》2017,36(3):209-221
随着经济的发展,矿产资源的开采和利用程度越来越高,一方面发现有地表露头矿床的几率越来越小,另一方面其造成的重金属污染严重危害环境和人类健康。自然界中的微生物与扩散到环境中的重金属会产生相互作用,具有这种特异性的细菌既可应用于指示隐伏金属矿床,亦可应用于重金属污染生物修复。本文从特异性微生物与重金属相互作用微观机制、微生物找矿、重金属污染土壤的微生物修复三个方面,对其研究现状和进展进行了评述,重点对特异性微生物与重金属离子发生的吸附、累积与转化过程,微生物改变重金属元素分布、赋存状态和毒性作用机理,蜡样芽孢杆菌(Bacillus cereus)与金的作用机制及其在寻找隐伏金矿的应用潜力,特异性微生物通过代谢产物吸附去除土壤中重金属元素及其辅助植物修复重金属污染等方面进行了介绍和阐述。  相似文献   

6.
Controls on the carbon isotopic signatures of methanotroph biomarkers have been further explored using cultured organisms. Growth under conditions which select for the membrane-bound particulate form of the methane monooxygenase enzyme (pMMO) leads to a significantly higher isotopic fractionation than does growth based on the soluble isozyme in both RuMP and serine pathway methanotrophs; in an RuMP type the delta delta 13Cbiomass equaled -23.9% for pMMO and -12.6% for sMMO. The distribution of biomarker lipids does not appear to be significantly affected by the dominance of one or the other MMO type and their isotopic compositions generally track those of the parent biomass. The 13C fractionation behaviour of serine pathway methanotrophs is very complex, reflecting the assimilation of both methane and carbon dioxide and concomitant dissimilation of methane-derived carbon. A limitation in CH4 availability leads to the production of biomass which is 13C-enriched with respect to both carbon substrates and this occurs irrespective of MMO type. This startling result indicates that there must be an additional fractionation step downstream from the MMO reaction which leads to incorporation of 13C-enriched carbon at the expense of dissimilation of 13C-depleted CO2. In these organisms, polyisoprenoid lipids are 13C-enriched compared to polymethylenic lipid which is the reverse of that found in the RuMP types. Serine cycle hopanoids, for example, can vary anywhere from 12% depleted to 10% enriched with respect to the CH4 substrate depending on its concentration. Decrease in growth temperature caused an overall increase in isotopic fractionation. In the total biomass, this effect tended to be masked by physiological factors associated with the type of organism and variation in the bulk composition. The effect was, however, clearly evident when monitoring the 13C signature of total lipid and individual biomarkers. Our results demonstrate that extreme carbon isotopic depletion in field samples and fossil biomarker lipids can be indicative of methanotrophy but the converse is not always true. For example, the hopanoids of a serine cycle methanotroph may be isotopically enriched by more than 10% compared to the substrate methane when the latter is limiting. In other words, hopanoids from some methanotrophs such as M. trichosporium would be indistinguishable from those of cyanobacteria or heterotrophic bacteria on the basis of either chemical structure or carbon isotopic signature.  相似文献   

7.
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea, which is a potential threat of methane leakage. Aerobic methane oxidation by methanotrophs, significant methane biotransformation that occurs in sediment surface and water column, can effectively reduce atmospheric emission of hydrate-decomposed methane. To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea, multi-day enrichment incubations were conducted in this study. The results show that the methane oxidation rates in the studied sediments were 2.03–2.36 μmol/gdw/d, which were higher than those obtained by sediment incubations from other areas in marine ecosystems. Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area. After the incubations family Methylococcaea (type I methanotrophs) mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%, whereas Methylocaldum decreased simultaneously in the incubated sediments. Collectively, this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area.©2022 China Geology Editorial Office.  相似文献   

8.
Methane is one of the potential greenhouse gases contributing to global climate change, with a global warming potential of about 25 times than that of carbon dioxide. Aerobic methane oxidation (methanotrophy) is the key process that counteracts emission of methane to atmosphere. In this study, methane oxidation capacity of different methane-oxidizing bacteria (methanotrophs) isolated from six different ecosystems was investigated. Methanotrophic consortium isolated from dumpsite proved to be most effective in oxidizing methane. Initially, methane oxidation rate was found to be 0.72 ± 0.036 mM/day; in course of the study consortium M5 showed an increase in methane oxidation rate up to 1.7 ± 0.016 mM/day. A maximum of 0.78 mol of CO2 production was found during methane oxidation in methanotrophs from dumpsite (M5). While varying temperatures, methane oxidation rate was in the range of 1.3–1.7 mM/day which has been found in the temperature range of 30–40 °C. Even at higher temperature (50 °C), 0.076 ± 0.14 mM of the methane was utilized per day. Methane oxidation was assessed by Michaelis–Menten kinetics. By varying the methane concentration, methane oxidation was studied and kinetic parameters such as V max and K m were derived using Lineweaver–Burk plot and found to be 1.497 mM/day and 2.23 mM, respectively. In methane mitigation approach, Methane soil sink is very essential because a balance between methane production by methanogens and consumption by methanotrophs plays an important role in methane emission reduction. Enhancing the methane soil sink will be a cost-effective method to cut down methane emission.  相似文献   

9.
桂江流域地下水污染途径及防控措施研究   总被引:1,自引:1,他引:0  
何愿  张颖  朱明 《中国岩溶》2015,34(4):387-394
对桂江流域开展岩溶地下水污染调查发现:流域内地下水污染源分为“三氮”污染源、重金属污染源、有机污染源三类;“三氮”污染源主要包括工业、养殖和生活三类污水、生活垃圾渗滤液、农业施用氮肥等;重金属污染主要来自工矿企业;有机污染来自工业、养殖业。污染途径主要有孤峰平原的分散入渗式、孤峰平原的脚洞灌入式、峰丛洼地的消水洞灌入式、溶丘谷地的入渗式和峰丛峰林谷地的天窗灌入式等五类。并对88组地下水样品测试结果进行多指标地下水污染综合评价,结果表明36.5%的水点为“三氮”污染,多以分散入渗进入地下水,其污染形态呈面状分布;15.3%的水点为重金属污染,主要通过峰丛洼地消水洞灌入式补给和溶丘谷地入渗补给两种途径,呈点状分布于污染场地附近;3.49%的水点为有机污染,主要为分散入渗补给途径,污染呈短线状或点状分布。   相似文献   

10.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

11.
水溶性有机质对土壤中污染物环境行为影响的研究进展   总被引:5,自引:2,他引:5  
水溶性有机质(DOM)作为有机配位体,含有羧基、羟基、羰基和甲氧基等活性功能团,可以通过与土壤中的污染物发生离子交换、吸附、络合、螯合、凝絮、氧化还原等一系列反应,进而影响它们在土壤中的形态、迁移转化和最终归宿。本文概述了DOM在土壤中的吸附,系统总结了近年来国内外关于水溶性有机质对土壤中污染物影响的研究进展,阐述了水溶性有机质能提高重金属的溶解度及其对重金属、农药、PAHs吸附解吸、迁移等环境行为所起的作用,最后指出今后应该进一步研究的问题。  相似文献   

12.
Heavy metal and organic pollutants in sediments along the coastal zone of southeastern China have been investigated. Sediment samples are retrieved from three depositional environments: coast, estuary, and tide-affected river mouth. The relative abundance of heavy metal and organic pollutants is related to their geochemical properties as well as depositional environments and anthropogenic discharge. Based on a sequential extraction method, it is revealed that anthropogenic Pb, Cr, Cu, and Cd are mainly bound to Fe–Mn oxides, suggesting that adsorption and co-precipitation of Fe–Mn oxides are in the control of their transfer processes from water column to sediment. Heavy metal bound to carbonates is also an important pool especially for Cd, Mn, and Pb. The main organic pollutants found in the study area include petroleum-related alkanes, phthalic acid ester, organic silicon, chlorophenol, phenyl ether, and amine. The accumulation of heavy metals and organics in surficial sediments has a decrease tendency from estuarine environment to coastal environment and to tide-affected river mouth.  相似文献   

13.
大气污染物向海洋的输入及其生态环境效应   总被引:7,自引:3,他引:7  
纵观20年来,特别是近几年来逐渐成为生物地球化学循环研究热点之一的大气对海洋物质输入的研究,从大气物质入海通量,大气物质入海对海洋生态系统和环境的影响,大气物质入海的科学研究计划和项目等方面分析了这一领域的研究现状和未来趋势。给出了不同海区各种主要大气入海物质的通量或在同类物质入海总量中的比例,讨论了氮、磷、铁等营养物质和持续性有毒污染物,如PAH、PCBs、杀虫剂和重金属对海洋生态系统和环境的不同影响。  相似文献   

14.
Heavy metals affect the biochemical reactions that take place during anaerobic digestion processes of organic matter. In this review, the different effects observed in anaerobic digestion processes and during the production of biomethane and biohydrogen from several substrates contaminated with and/or inheriting heavy metals from the substrates themselves were discussed. It has been found that heavy metals exert important roles in biochemical reactions. Heavy metals like copper, nickel, zinc, cadmium, chromium and lead have been overwhelmingly reported to be inhibitory and under certain conditions toxic in biochemical reactions depending on their concentrations. Heavy metals like iron may also exhibit stimulatory effects, but these effects have been scantily observed. This review also concludes that the severity of heavy metal inhibition depends upon factors like metal concentration in a soluble, ionic form in the solution, type of metal species, and amount and distribution of biomass in the digester or chain of biochemical reactions which constitute the anaerobic digestion process. A majority of studies have demonstrated that the toxic effect of heavy metals like chromium, cadmium and nickel is attributable to a disruption of enzyme function and structure by binding of the metal ions with thiol and other groups on protein molecules or by replacing naturally occurring metals in enzyme prosthetic groups. This review has not found published data on the effects of heavy metals on the hydrolysis stage of anaerobic digestion process chemistry, and hence further studies are required to depict any changes.  相似文献   

15.
Groundwater from a shallow aquifer in Mobara, a city in a natural gas field in Chiba Prefecture, Japan, was found to contain a significant amount of dissolved methane (<3.1 mM) along with nitrate, phosphate and methane-oxidizing bacteria (methanotrophs, <9.9×106 MPN ml–1) which can degrade trichloroethylene (TCE). This water exhibited high methanotroph growth activity and rapid degradation of TCE. This water was introduced into a TCE-contaminated aquifer. The concentration of TCE at the monitoring well 2 m down-gradient of the injection pit decreased from 128 g L–1 before the injection to less than the lower detection limit of 12.5 g L–1 after the injection, while it decreased only slightly (to 86 g L–1) when control water was injected. These results demonstrate the feasibility of utilizing a natural groundwater resource containing methane and methanotrophs without any additives for bioremediation of a TCE-contaminated site.  相似文献   

16.
城市土壤环境地球化学研究--以苏州市为例   总被引:4,自引:0,他引:4  
李家熙  葛晓立 《地质通报》2005,24(8):710-714
通过苏州城市环境地球化学调查工作的实施,对城市土壤环境地球化学研究的工作方法进行了初步研究。结果显示。苏州城市土壤的主要污染区域分布于东南居民生活区、西部工业区、东部木材加工厂集中区及公路干线一带;主要污染物为重金属、有机污染物多环芳烃、有机氯农药等。根据城市自然地理环境、功能分区特点和分布面积大小,确定土壤环境地球化学采样密度和测试项目是城市土壤环境地球化学研究的关键技术。  相似文献   

17.
湖泊湿地生态地球化学评价的研究重点为湖泊湿地生态系统中的重金属、植物营养元素及一些有机污染物,评价标准体系相应地包括水质基准、营养物基准、水体沉积物质量基准、饮用水卫生标准、土壤环境质量标准、食品卫生标准、湖泊水库富营养化标准等。  相似文献   

18.
Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum. In particular, biomarker lipids produced by a single organism do not necessarily have the same carbon isotopic composition.  相似文献   

19.
多环芳烃生物恢复技术的研究进展   总被引:2,自引:0,他引:2  
多环芳烃是一大类广泛存在于环境中的有机污染物,本文介绍了多环芳烃生物恢复的三种不同方法:就地耕作法,场外耕作法和塞流式污泥生物反应器,并对其研究现状和最新研究成果进行了归纳,总结和探讨。  相似文献   

20.
Some bacteria like the heavy metal resistant Alcaligenes eutrophos CH34strains are able to promote biomineralization, being the biologically induced crystallization of heavy metals. In the presence of heavy metals, this strain may create an alkaline environment in the periplasmic space and outer cell environment appropriate induction of heavy metals resistance mechanisms. In such an environment metal hydroxides are formed together with metal bicarbonates resulting from the carbonates production by the cell. Also metals bind to out cell membrane proteins and the metal hydroxides and bicarbonates precipitate around these nucleation foci inducing further metal crystallization. A pilot-plant was set up in which Alcaligenes eutrophus CH34 were inoculated and reproduced in a composite membrane, based on polysulfone. The membrane is casted on a polyester support. The biological membrane was in continuous contact with nutrients from inside and the other side was in contact with wastewater flow containing 120-mg/l cadmium. Nutrients are used for growth and reproduction of bacteria and for development of bacteria resistance agents against heavy metals. At the effluent side immobilized bacteria induce metal precipitation and metal crystals. A column, which was in continuous contact with treated effluent, was continuously filled with glass bends to which the metal crystals bind and grow. The efficiency for Cd removal was over 99 percent. Cd removal could be recovered from the recuperation column by acid treatment without damaging the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号