首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron oxide nanoparticles (nano-Fe) have been widely used in environmental remediation, including that of emerging contaminants, such as antibiotics. Magnetite nanoparticles (nano-Fe3O4) have been reported to form on the outer surface of nano-Fe and have the potential to be a good sorbent for certain antibiotics. This study reports, for the first time, the kinetics and thermodynamics of adsorption of a common tetracycline group antibiotic, oxytetracycline (OTC), on nano-Fe3O4. Batch sorption kinetics were evaluated by varying initial OTC concentration (0.25–2 mM), nano-Fe3O4 concentration (2.5–20 g L?1), pH (3.8–7.6), temperature (5, 15, 35 °C), and ionic strength (0.01–0.5 M KCl) to derive thermodynamic and kinetic constants. Results show that OTC sorption kinetics is rapid and increases with increasing temperature. The derived thermodynamic constants suggest a surface chemical-controlled reaction that proceeds via an associative mechanism. Results indicate the potential of developing a nano-magnetite-based remediation system for tetracycline group of antibiotics.  相似文献   

2.
The objective of this work was to study sorption–desorption and/or precipitation–dissolution processes of Hg(II) compounds considering an eventual contact of soils with Hg-bearing wastes. In addition, this study contributes new data about Hg(II) chemistry in alkaline systems. Saline and alkaline soils with low organic matter (<1 %) and high clay content (60–70 %) were obtained near a chlor-alkali plant. Batch techniques were used to perform the experiments using 0.1 M NaNO3 solutions. Total Hg(II) concentrations ranged from 6.2 × 10?8 to 6.3 × 10?3 M. Sorption of Hg(II) was evaluated at two concentration ranges: (a) 6.2 × 10?8 to 1.1 × 10?4 M, and (b) 6.4 × 10?4 to 6.3 × 10?3 M. At low Hg(II) concentrations, adsorption occurred with a maximum sorption capacity ranging from 4 to 5 mmol/kg. At high Hg(II) concentrations, sorption–precipitation reactions occurred and maximum sorption capacity ranged from 17 to 31 mmol/kg. The distribution of Hg(II) hydrolysis products showed that Hg(OH)2 was the predominant species under soil conditions. According to sorption experiments, X-ray diffraction and chemical speciation modelling, the presence of Hg(OH)2 in the interlayer of the interstratified clay minerals can be proposed. Hg(OH)2 was partially desorbed by repeated equilibrations in 0.1 M NaNO3 solution. Desorption ranged from 0.1 to 0.9 mmol/kg for soils treated with 5.8 × 10?5 M Hg(II), whereas 2.1–3.8 mmol/kg was desorbed from soils treated with 6.3 × 10?3 M Hg(II). Formation of soluble Hg(II) complexes was limited by low organic matter content, whereas neutral Hg(OH)2 was retained by adsorption on clay mineral surfaces.  相似文献   

3.
Aluminium smelters are major sources of F emission to the environment. We studied, in laboratory experiments, the sorption and desorption of fluoride on organic and mineral horizons of soils located within 2 km from one of these factories, situated in the northern coast of Galicia (NW Spain). The soils, developed from granite, are acid (pH H2O 3.9–5.5), rich in organic matter (4–16 % C in the A horizon) and most A horizons have high Al saturation in the exchange complex. All samples showed a notable F sorption, between 1,066 and 1,589 mg kg?1, after adding 200 mg F L?1, which accounts for 53–80 % of F added. The sorption was slightly higher in the A horizons than in the respective organic horizons (differences of up to 194 mg kg?1). The fluoride sorption upon addition of 200 mg F L?1 correlated significantly (p < 0.05) with soil pH in water (r = ?0.77), iron extracted by acid ammonium oxalate (r = 0.68), aluminium plus iron extracted by acid ammonium oxalate (r = 0.63), exchange aluminium (r = 0.52) and clay percentage in soil (r = 0.76). The F sorption fitted to both Langmuir and Freundlich models. Desorbed F accounted for only 12–22 % of sorbed fluoride and correlated (p < 0.05) negatively with non-crystalline (extracted by acid ammonium oxalate) Fe (r = ?0.51) and clay content (r = ?0.74) and positively with organic matter (r = 0.69) and with the effective cation exchange capacity of the soil (r = 0.50).  相似文献   

4.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

5.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10?7 and 2 × 10?6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH ≈6 to ≈9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (≈6 to ≈6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH. The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH?) and silanol (>SiOH?) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

6.
Previous studies in our laboratory have demonstrated that drinking-water treatment residuals are effective sorbents of arsenic V. However, the effect of soil solution chemistry on arsenic V sorption by drinking-water treatment residuals-amended soils remains to be explored. The current study uses a batch incubation experimental set up to evaluate the effect of soil solution pH, competing ligands, and complexing metal on arsenic V sorption by a sandy soil (Immokalee series) amended with two rates (25 and 50 g kg?1) of aluminum and iron-based drinking-water treatment residuals. Experiments were conducted at three initial arsenic loads (125, 1,875, 3,750 mg kg?1) and a constant solid: solution ratio of 200 g L?1. An optimum equilibration time of 8 days, obtained from kinetic studies, was utilized for sorption experiments with both aluminum and iron drinking-water treatment residual-amended soil. Presence of phosphate decreased arsenic V sorption by both aluminum and iron drinking-water treatment residual amended soils, with a strong dependence on pH, drinking-water treatment residual types, drinking-water treatment residual application rates, and phosphate concentrations. Addition of sulfate had no effect on arsenic V sorption by aluminum or iron drinking-water treatment residual-amended soil. A complementing effect of calcium on arsenic V sorption was observed at higher pH. Results elucidating the effect of soil solution chemistry on the arsenic V sorption will be helpful in calibrating drinking-water treatment residual as a sorbent for remediation of arsenic-contaminated soils.  相似文献   

7.
Clay minerals synthesized under surface conditions take up boron in proportion to the concentration of boron in the solution. A synthetic montmorillonite contained 2160 ppm B when precipitated from a solution containing 5 ppm B and having a pH of 8.5. The fixation of B by the synthetic clay mineral is greatly reduced by a high ?HCO3 concentration in the solution. Part of the fixed boron is incorporated into the tetrahedral sheet of the clay mineral structure, whereas the remainder is present in the form of a Mg borate-like complex. Mg borate-like complexes similar to those found in the synthetic clay may also occur in detrital clays. This possibility was examined experimentally using natural illite and montmorillonite suspended in solutions containing boron alone and magnesium-boron in combination at pH 8–9 and 10. The results show that more B was sorbed from solutions containing both Mg and B than from solutions containing B alone. For example, at pH 8, montmorillonite takes up 18 ppm B from the combination solution and 11 ppm from a solution containing only B. In a similar experiment, illite takes up 28 and 20 ppm B, respectively. It is suggested that B in natural clays is fixed partly as a Mg-borate-like complex. This complex probably formed as a first step by sorption of B to Mg(OH)2, which may be present in clays.These results should apply to the interpretation of the boron content of recent clayey sediments  相似文献   

8.
Batch sorption system using co-immobilized (activated carbon and Bacillus subtilis) beads as adsorbent was investigated to remove Cr(VI) from aqueous solution. Fourier transform infrared spectroscopy analysis showed the functional groups of both bacteria and activated carbon in co-immobilized beads. Experiments were carried out as a function of contact time (5–300 min), initial metal concentration (50–200 mg L?1), pH (2–8), and adsorbent dose (0.2–1 g L?1). The maximum percentage of removal was found to be 99 %. Langmuir model showed satisfactory fit to the equilibrium adsorption data of co-immobilized beads. The kinetics of the adsorption followed pseudo-second-order rate expression, which demonstrates that chemisorption plays a significant role in the adsorption mechanism. The significant shift in the Fourier transform infrared spectroscopy peaks and a Cr peak in the scanning electron microscope–energy dispersive spectroscopy spectra further confirmed the adsorption. The results indicate that co-immobilized beads can be used as an effective adsorbent for the removal of Cr(VI) from the aqueous solution.  相似文献   

9.
This study investigated the effect of cations and anions on the sorption and desorption of iron (Fe) and manganese (Mn) in six surface calcareous soil samples from Western Iran. Six 10 mM electrolyte background solutions were used in the study, i.e., KCl, KNO3, KH2PO4, Ca(NO3)2, NaNO3, and NH4NO3. NH4NO3 and NaNO3 increased the soil retention of Fe and Mn, whereas Ca(NO3)2 decreased the soil retention of Fe and Mn. Iron and Mn sorption was decreased by NO3 ? compared with H2PO4 ? or Cl?. The Freundlich equation adequately described Fe and Mn adsorption, with all background electrolytes. The Freundlich distribution coefficient (K F) decreased in the order H2PO4 ? > Cl? > NO3 ? for Mn and H2PO4 ? > NO3 ? > Cl? for Fe. The highest sorption reversibility was for Fe and Mn in competition with a Ca2+ background, indicating the high mobility of these two cations. A MINTEQ speciation solubility model showed that Fe and Mn speciation was considerably affected by the electrolyte background used. Saturation indices indicated that all ion background solutions were saturated with respect to siderite and vivianite at low and high Fe concentrations. All ion background solutions were saturated with respect to MnCO3(am), MnHPO4, and rhodochrosite at low and high Mn concentrations. The hysteresis indices (HI) obtained for the different ion backgrounds were regressed on soil properties indicating that silt, clay, sand, and electrical conductivity (EC) were the most important soil properties influencing Fe adsorption, while cation exchange capacity (CEC), organic matter (OM), and Mn-DTPA affected Mn adsorption in these soils.  相似文献   

10.
Microwave-assisted tetrabutyl ammonium-impregnated sulphate-crosslinked chitosan was synthesized for enhanced adsorption of hexavalent chromium. The adsorbent obtained was extensively characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray studies. Various isotherm models such as Langmuir, Freundlich and Dubinin–Radushkevich were studied to comprehend the adsorption mechanism of hexavalent chromium by the adsorbent. Maximum adsorption capacity of 225.9 mg g?1 was observed at pH 3.0 in accordance with Langmuir isotherm model. The sorption kinetics and thermodynamic studies revealed that adsorption of hexavalent chromium followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. A column packed with 1 g of adsorbent was found to give complete adsorption of Cr(VI) up to 900 mL of 200 mg L?1 solution which discerns the applicability of the adsorbent material for higher sample volumes in column studies. The effective adsorption results were obtained due to both ion exchange and ion pair interaction of adsorbent with hexavalent chromium. Greener aspect of overall adsorption was regeneration of the adsorbent which was carried out using sodium hydroxide solution. In the present study, the regenerated adsorbent was effectively reused up to ten adsorption–desorption cycles with no loss in adsorption efficiency.  相似文献   

11.
A hydrophilic kapok fiber was prepared by a chemical process of the Fenton reaction and used as an adsorbent to remove Pb(II) from aqueous solution. The effects of experimental parameters including pH, contact time, Pb(II) concentration, and coexisting heavy metals were estimated as well as evaluated. The optimum concentrations of FeSO4 and H2O2 for the Fenton reaction-modified kapok fiber (FRKF) were 0.5 mol L?1 and 1 mol L?1, respectively. The adsorption kinetic models and isotherm equations of Langmuir and Freundlich were conducted to identify the most optimum adsorption rate and adsorption capacity of Pb(II) on FRKF. The FRKF displayed an excellent adsorption rate for Pb(II) in single metal solution with the maximum adsorption capacity of 94.41?±?7.56 mg g?1 at pH 6.0. Moreover, the FRKE still maintained its adsorption advantage of Pb(II) in the mixed metal solution. The FRKF exhibited a considerable potential in removal of metal content in wastewater streams.  相似文献   

12.
In this work, the effectiveness of native and chemically modified rice bran to remove heavy metal Pb(II) ions from aqueous solution was examined. Chemical modifications with some simple and low-cost chemicals resulted in enhancement of the adsorption capacities and had faster kinetics than native rice bran. Experiments were conducted in shake flasks to monitor the upshot of parameters over a range of pH, initial Pb(II) concentrations and contact times using a batch model study. The sorption capacities q (mg g?1) increased in the following order: NaOH (147.78), Ca(OH)2 (139.08), Al(OH)3 (127.24), esterification (124.28), NaHCO3 (118.08), methylation (118.88), Na2CO3 (117.12) and native (80.24). The utmost uptake capacity q (mg g?1) was shown by NaOH-pretreated rice bran. The results showed that, using NaOH-modified rice bran, the chief removal of Pb(II) was 74.54 % at pH 5, primary Pb(II) concentration 100 mg L?1 and contact time 240 min. Equilibrium isotherms for the Pb(II) adsorption were analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm model, showing Pb(II) sorption as accessible through the high value of the correlation coefficient (R 2 = 0.993), showed a q max value of 416.61 mg g?1. The kinetic model illustrated adsorption rates well, depicted by a second order, which gives an indication concerning the rate-limiting step. Thermodynamic evaluation of the metal ion ?G o was carried out and led to the observation that the adsorption reaction is spontaneous and endothermic in nature. NaOH chemically modified rice bran was a superb biosorbent for exclusion of Pb(II) and proved to be excellent for industrial applications.  相似文献   

13.
The development of a fast, effective, simple and low-cost procedure for chromium speciation is an analytical challenge. In this work, a new and simple method for speciation and determination of chromium species in different matrices was developed. Sepia pharaonis endoskeleton nano-powder was used as an adsorbent for the dispersive micro-solid-phase extraction. Finally, the desorbed chromium was determined using a graphite furnace atomic absorption spectrometer. The experimental results showed that Cr(III) could be quantitatively extracted by the adsorbent, while Cr(VI) adsorption was negligible. Concentrated H2SO4 and ethanol reduced Cr(VI)–Cr(III), and total chromium content was assessed as Cr(III). Then, the Cr(VI) concentration in the sample was calculated as the difference. The optimum conditions were obtained in terms of pH, adsorbent amount, contact time, and type, concentration and volume of eluent. Under the optimum conditions that involved the speciation of chromium ions from 25 mL of the water samples at pH 7.0 using 0.025 g of the adsorbent with contact time of 5 min, the method was validated in terms of linearity, precision and accuracy. The calibration curve was linear over the concentration range of 0.01–25.00 μg L?1 for Cr(III). The obtained limit of detection for the proposed method was 0.003 µg L?1. The maximum adsorption capacity of the adsorbent was found to be 995.57 mg g?1. The proposed method was validated by the speciation of Cr(III) and Cr(VI) in different real water and wastewater samples with satisfactory results.  相似文献   

14.
In this research, ordered mesoporous silica, including MCM-41, was synthesized via sol–gel process and a propyl methacrylate-modified ordered mesoporous silica (MPS-MCM-41) was successfully synthesized via a postsynthesis grafting process. Then both MCM-41 and MPS-MCM-41 were characterized using FTIR, XRD, SEM and BET techniques. The synthesized materials were utilized as adsorbent for removal of diazinon pesticide from aqueous solutions. The effects of pH, contact time, adsorbent dose, initial concentration and temperature have been evaluated using removal efficiencies. Also, the kinetic, thermodynamic and isotherm models of diazinon adsorption were studied for the both MCM-41 and MPS-MCM-41. The results showed that the maximum adsorption capacities are 142 and 254 mg g?1 for the MCM-41 and MPS-MCM-41, respectively, at the initial concentration of 50 mg L?1, temperature of 298 K and adsorbent dose of 0.1 g L?1. The highest percentages of diazinon removal are 56.4 and 87.2 (at adsorbent dose of 2 g L?1 and the temperature of 318 K) for the MCM-41 and MPS-MCM-41, respectively. The Freundlich and Langmuir models are more compatible for describing equilibrium data of the diazinon adsorption capacity on the MCM-41 and MPS-MCM-41, respectively. Thermodynamic study indicated that the adsorption process of diazinon onto MCM-41 and MPS-MCM-41 is exothermic and has a spontaneous nature. The higher adsorption capacity and higher spontaneous nature of MPS-MCM-41 in comparison with MCM-41 might be due to the presence of the both hydrogen bonding and hydrophobic interaction between surface functional groups of MPS-MCM-41 (hydroxyl and propyl methacrylate) and diazinon functional groups.  相似文献   

15.
Adsorption of Cr(VI) using native and chemically modified marine green macroalgae Codium tomentosum biomass and its adsorption kinetics were studied under specific conditions. Maximum Cr(VI) removal occurred at pH 2 for both untreated and acid-treated biomass. However, base-treated biomass exhibited maximum adsorption at pH 6 due to the hydrolysis of methyl esters present in the cellulose, hemicellulose and lignin molecules resulting in carboxyl groups (COO?) on the surface. The effect of adsorbent dose revealed that untreated and acid-treated biomass follows Henry’s linear isotherm, while base-treated biomass exhibited sigmoidal curve indicating energetic heterogeneity on the adsorbing surface. The monolayer adsorption capacity of untreated, acid-treated and base-treated biomasses was 5.032 ± 0.644, 5.445 ± 0.947, 3.814 ± 0.559 mg g?1, respectively. Adsorption was found to follow Ho and McKay’s pseudo-second-order kinetic model with decreasing pseudo-second-order rate constant (K 2, g mg?1 min?1) of 0.088 ± 0.037 (acid-treated), 0.019 ± 0.003 (untreated) and 0.012 ± 0.003 (base-treated).  相似文献   

16.
The removal of hexavalent chromium from wastewater streams has received an considerable attention in recent years, since it can cause harmful effects on the environment. Several approaches, including adsorption, are recognized to tackle this problem, but unfortunately most of these processes are impressed with practical conditions of the experiments. The main objective of this study was to recognize applicable conditions for Cr(VI) removal from an industrial drainage using nature-derived adsorbents (brown coal and modified zeolite) and to make the process more adaptive by using adsorbents conjointly. Batch experiments were carried out by agitating Cr(VI) stock solution with adsorbents at room temperature. The influence of main operating parameters was explored, and the best proportion of the adsorbents was determined. Maximum sorption of Cr(VI) onto brown coal was observed at pH = 4 by adding 60 g L?1 adsorbent to contaminated solution. In case of using zeolite, the modification process was required, and the pH indicated a weak influence in a wide range (2–8). Optimum dosage of modified zeolite for Cr(VI) removal was 10 g L?1. The hybrid application of adsorbents with the mass ratio of brown coal/modified zeolite at (3:1) was capable of removing more than 99% of Cr(VI) from contaminated wastewater in the natural pH range of the wastewater. The adsorption of Cr(VI) by brown coal and modified zeolite followed Langmuir and Freundlich isotherm models, respectively. Sorption of Cr(VI) onto both brown coal and modified zeolite fitted well to pseudo-second-order rate reaction.  相似文献   

17.
Yemeni natural zeolite was characterized by XRD, SEM, FTIR and XRF as well as its applicability as a sorbent material for Cd2+ ions in aqueous solutions. The zeolitic sample is clinoptilolite-K of heulandite group with intermediate Si/Al ratio. The removal% of Cd2+ by natural clinoptilolite was investigated as a function of contact time, zeolite dose, pH and initial concentration of Cd2+ ions. Kinetic experiments indicated that sorption of Cd2+ follows two steps: rapid ion exchange process on the outer surface is followed by slow adsorption process on the inner surface of clinoptilolite. The equilibrium was attained after 120 min, and the results were fitted well with pseudo-second order and Elovich kinetic models. The Cd2+ removal% is strongly dependent on pH value and increases with the increasing pH value. Equilibrium sorption isotherm of Cd2+ by clinoptilolite was described well using the Langmuir, Freundlich, and Temkin isotherms models. However, the data relatively well fitted with Freundlich model (R 2 = 0.97) rather than by the other models. Response surface methodology in conjunction with central composite rotatable statistical design was used to optimize the sorption process. The model F-value indicated the high significance of second-order polynomial model to represent the interaction between the operating parameters. From the Design Expert’s optimization function, the predicted optimum conditions for maximum removal% of Cd2+ (80.77%) are 116 min contact time, 0.27 gm dose, and pH 7 at an initial Cd2+ concentration of 25 mg/L.  相似文献   

18.
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (ΔG o = ?25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85–100 %) on dilution with 50–80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.  相似文献   

19.
Adsorption characteristics of water hyacinth roots powder for the removal of Indosol Dark-blue GL dye were investigated in batch mode. Operating variables, such as initial solution pH, presence of detergent, adsorbent dosage, initial concentration and contact time, were studied. The results showed that the adsorption of dye increased with increasing the initial concentration and contact time. The adsorption is highly pH dependent and adsorption capacity increased with decrease in pH. Kinetic study revealed that the uptake of Indosol Dark-blue GL was very rapid within the first 15 min and equilibrium time was independent of initial concentration. Batch equilibrium experiments were carried out at different pH and found that equilibrium data fitted well to Langmuir isotherm model. The maximum sorption capacity of the adsorbent was found as 86 mg g?1 at pH 3 which reduced to 64 mg g?1 at pH 5. The presence of detergent reduced the sorption capacity of the adsorbent significantly. Using equilibrium and kinetic data, the forward and backward rate constants were determined from the unified approach model. Desorption study revealed that the dye can be recovered by swing the pH from low to high.  相似文献   

20.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号