首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1989年5月8日耀斑及其抛射的光谱特征   总被引:1,自引:0,他引:1  
本文简介了1989年5月8日的SN级耀斑及其抛射活动全过程的光谱特征。(a)耀斑核的强度在Ha、Hα和Hγ三条谱线中依次减弱;(b)运动形式。在耀斑极大时向日边外抛射的物质呈麻花状扭曲旋转上升;(c)抛射速度。上升很快,下降缓慢,上升的平均速度V_u120kms~(-1),下降的平均速度V_d12kms~(-1)。抛射的最大投影高度达22000km。  相似文献   

2.
在大量的 H_α边缘耀斑电影胶卷中,为了精炼起见我们选取了15套.电影胶卷是在1959年—1960年期间用紫金山天文台的利奥型色球望远镜拍摄的.边缘耀斑的光度和定位测量得出下列结果:(1)在耀斑的闪光阶段存在着剧烈的径向物质抛射,常常耀斑的一部分被抛射到色球层之上高达2·10~4公里到2.5·10~5公里处.(2)抛射的平均速度是30公里/秒—400公里/秒的数量级,最大的速度出现在抛射的初始阶段,抛射的加速度是超引力的.(3)耀斑的抛射运动是有规则的,且明显地与活动区的磁场有关.(4)在耀斑闪光阶段,抛射速度直接地随亮度增加的速率而变化.最后,注意到了射电事件的出现与抛射密切有关.  相似文献   

3.
这群黑子于1988年4月13日出现在日面的东边缘。怀柔编号:88037; Boulder编号4990。日面位置N22,L314。其磁场极性较为复杂,17日在后随主黑子的右上方爆发一次较大的耀斑,尔后在18日、20日和21日在前导与后随之间又不断有些小的耀斑爆发.在此期间,怀柔太阳磁场望远镜取得了光球纵向磁场、光球5324A的单色象、H_β的耀斑单色像和H_β视向磁场的大量资料。 16日后随主黑子右上方有一分立的小黑子(S极),17日,耀斑就产生在它们之间(图1中的圆圈表示耀斑发生的位置)。从图2a、b可以看到,这里的极性复杂,异极性磁区互相挤压。耀斑发生在B_(11)=0的磁场中性线一侧,同样是避开了黑子的本影。这与已有的结论是相一致的。对比16日(图2a)和17日(图2b)的纵场磁图,可以看到在标有1和2的地方分别有一N极在向S极挤压。17日N极把S极分割开来。在2处,N极本来是互相连接的,但其临近的S极亦不断向其挤压渗透,耀斑前,S极把N极给断开了。在这些地方,17日UT0423时,爆发了耀斑,UT0430时,耀斑达到极大,可以看出,耀斑的亮核位于异极区挤压的前峰。耀斑发生的位置的纵场梯度为0.18G/Km。后随黑子的右上方,耀斑爆发前(图2a)其最大磁场强度为640G,爆发后(图2c)最大磁场强度为160G。这表明爆发的过程也是能量释放的过程。 虽然耀斑的单  相似文献   

4.
太阳耀斑是太阳大气中最为剧烈的活动现象之一,涉及到很多复杂的物理过程,包括快速的能量释放、等离子体的不稳定性、高能粒子的加速和传播、耀斑大气辐射和动力学变化、物质的运动和抛射现象等.  相似文献   

5.
本文对9月8日的大耀斑及其物质扼射作了详细的形态分析,结果表明:(1)耀斑有闪相,最大强度为周围未扰区的4倍。(2)耀斑双带的分离速度达60公里/秒。(3)耀斑有环形物质抛射,在高度为11万公里时,速度达427公里/秒。(4)耀斑的射电辐射,短波早于长波,它可能与耀斑的环形物质抛射有关。  相似文献   

6.
分别对1989年5月8日太阳西南边缘爆发了一个SN级的圆形耀斑部分和柱状物质抛射部分的运动情况进行分析讨论。耀斑圆形直径增大过程的膨胀速度较大,最大为110km/s,时间非常快,从开始产生至膨胀到最大直径15500km仅用了4min时间;减小收缩的过程速度缓慢,为-20~-10km/s,时间过程相对长,从最大直径开始减小到完全消失用了17min时间。柱状物质抛射部分的直径从开始膨胀到最大9060kin用了7min时间,最大速度为35kin/s;收缩过程用了14min时间,收缩速度在-15~-5km/s左右。柱状物质抛射部分的升降速度,在耀斑极大以后的时间仍在上升,并仍以很高的速度向上喷射,到耀斑极大后3min才开始下降。柱状物质抛射部分到达最大高度22000km的时间与其直径膨胀到最大的时间同时,上升的速度100~130km/s,下降的速度在-20~-5km/s,抛射物质下降到16000~15000km的高度缓慢消失。  相似文献   

7.
一个拱桥状爆发日珥   总被引:2,自引:2,他引:0  
1991年3月7日在太阳东北边缘产生了一个爆发日珥。它产生在没有耀斑、暗条、黑子等其它太阳活动现象的一个相对宁静的日面区域。日珥抛射的最大高度为6.97×104km,最大长度为11.6×104km,从形态的大小来看它属于中等偏小的爆发日珥。抛射的时间过程,上升阶段非常快,而下降阶段则较缓慢,有类似于耀斑爆发的时间过程。日珥爆发后的绝大部分物质基本上在磁场作用下沿磁力线作抛物线运动形成拱桥形状,并保持到消失。日珥下降前后,顶端有少部分物质被抛射脱离日珥主体部分,扩散到行星际空间。  相似文献   

8.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

9.
<正>太阳耀斑是发生在太阳大气中的一种剧烈的活动现象,发生的时标约为几分钟到几十分钟.耀斑过程涉及能量释放、等离子体加热、粒子加速、物质运动、波动等现象.耀斑爆发能够释放出大量的能量,所发出的辐射基本覆盖了电磁波的所有波段.耀斑发生通常还会伴随日冕物质抛射(CME),从而对空间和地球环境造成影响.目前我们对耀斑过程的理解还很不足(定量方面),其中的一些关键问题仍待解决,包括:耀斑能量  相似文献   

10.
根据云南天文台太阳色球H_α和相应的光球黑子观测以及磁场测量,并结合有关X—ray资料等,对1981年4月1日日面4N大耀斑进行了部份测量和分析。结果表明,该耀斑为环系;光球浮现磁流和黑子扭曲、挤压和剪切运动是触发该耀斑的直接原因。而活动的黑子光桥又是浮现磁流的一种重要标志;耀斑环或带与磁场位形密切相关;耀斑后在运动空间原位置处光球又浮现出部份磁流;卵形暗条内预示能爆发大耀斑。  相似文献   

11.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型爆发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段射电辐射和太阳物质抛射等)观测资料的分析,定性地探讨了WLF的起源、加热机制和发射地点的问题.假设了WLF和射电运动IV型射电爆发可能有共同起源的低日冕电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热电子沉降能量于色球层,产生色球层的压缩波或向下的辐射场进而使上光球层温度增加导致WLF此外,提出WLF可能会伴有耀斑后环和射电精细结构的对应物.  相似文献   

12.
Boulder88161(AR5060)黑子群是1988年所有黑子群中最大的一群,后随部分有一δ型黑子F3。图1为7月2日的白光照片。 1、光学耀斑:(1)S级小耀斑数在28日最大,之后几天逐步下降,但仍保持在每天3~5个。(2)X-射线强度与S级耀斑个数基本一致。M级事件与1,2,3级耀斑相对应。(3)射电流量曲线与耀斑的1,2,3级个数相对应。 2、黑子群的纵向磁场演化:纵向场结构变化十分明显。浮现磁通逐渐变强,梯度最大为0.4~0.5G/Km,在耀斑处为<0.35G/Km。对耀斑处磁通量逐日上升。在耀斑前几天上升很快。黑子群横向场:在3B级耀斑处横向场很弱,尤其在耀斑的位置上。而在黑子后随部分有很强的横向场存在。 3、耀斑的发生过程:7月2日的3B级耀斑约从0030UT开始,0056UT极大,约一个多小时后才消失。此处中性线扭曲,形成一种湾形结构。一条横躺的S形暗条勾出了中性线形状。另有一束很粗的暗条从这一区域出发与黑子后随部分相连。耀斑初始是由S形暗条西端开始发亮的。约5分钟后后随部分有增亮,8分钟后消失。在S形暗条处耀斑增亮达到极大,形状是沿着中性线和暗条走向的。达到最大面积时,发亮区域覆盖了S极性区。 分析:88161是一个非常活跃的新生黑子群。后随部分磁场复杂多变,而大的耀斑并没有发生在那里。其原因:(1)大耀斑不同于小耀斑,  相似文献   

13.
本文综述了超级活动区AR5395的特征,爆发太阳耀斑的概况以及地球物理效应。这个活动区在所有方面都是引人注目的。它位于高纬,面积罕见,密集,发展变化快,磁结构异常复杂,较大的几个后随极性本影被许多前导极性本影汇围成“U”字形。它通过日面期间,耀斑爆发频繁,其位置远离赤道,许多耀斑都伴随着物质抛射,共产生11个X级、48个M级X射线耀斑事件,引起了两次三级质子事件,其持续时间较  相似文献   

14.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段电辐身和太阳物质抛射等)瓣分析,定笥地探讨了WLF的起源、加热机制和发射地点的问题,假设了WLF和射电运动IV型射电爆发可能有共同起源的低日晚电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热降能量于色球层,产生色球层的压缩波或向下的辐身场进而使上光球  相似文献   

15.
AR5047活动区是第3次联测期(1988年6月24日-7月7日)的第1个目标。该活动区在22日前只发生过一些级别很低的小耀斑,但是在23日和24日接连爆发4个X级的X射线耀斑,其中23日0923UT的1B/X1.6耀斑和24日0422UT的2B/X1.3耀斑均被云南天文台26CM太阳望远镜观测到。特别是24日的2B/X1.3耀斑除用Hα线心之外。还用±0.5A;±0.75A;±1.0A的偏带作高时间分辨(~5秒拍摄1画幅)的观测。 本文刊载该耀斑的Hα和偏带时间发展系列照片和耀斑开始时的白光黑子群精细结构照片。 从系列的耀斑像上清楚看出该耀斑有好几个初始亮点在不同时间发亮并到达其亮度和面积极大。比对Hα和偏带单色像以及白光黑子群的精细结构指出,耀斑主要亮块发生在黑子群的破裂处,并遮盖主要黑子的大部分。  相似文献   

16.
太阳空间观测揭示出太阳的高能电子,高能质子发射以及γ射线爆发。证实了有关的太阳射电辐射理论,揭示出太阳耀斑中的核反应。日冕物质抛射和耀斑等离子体云的空间观测揭示出它们之间的区别和联系,认识到耀斑的热区和冷区。在阳和日球磁场以观测发展了磁流体动力学理论。  相似文献   

17.
张延安  宋慕陶  季海生 《天文学报》2002,43(2):155-159,T001,T002
2000年6月18日中国科学院紫金山天文台赣榆观测站观测到太阳西边缘一个小型抛射现象,寿命仅15^m,不属于耀斑的后期抛射现象,可看到十发精细的螺旋结构。用低层大气磁重联提供的初速约100kg/s,在略骈劳伦兹力情况下,给出了准均匀密度抛射柱所能达到的高度,和观测值一致。  相似文献   

18.
根据Hα色球和光球磁场资料对AR5395中观测到的耀斑进行分析,致密(Ⅰ型)耀斑的特点是整个磁力线管发亮,横跨在磁性反转线上。双带(Ⅱ型)耀斑的亮块分布在磁性反转线两侧,通常不易看到发亮的磁力线管或环弧系。发生在0244UT,3月9  相似文献   

19.
太阳空间观测揭示出太阳的高能电子、高能质子发射以及γ射线爆发。证实了有关的太阳射电辐射理论、揭示出太阳耀斑中的核反应。日冕物质抛射和耀斑等离子体云的空间观测揭示出它们之间的区别和联系, 认识到耀斑的热区和冷区。太阳和日球磁场观测发展了磁流体动力学理论  相似文献   

20.
在太阳活动区AR5395中连续几天内存在着旋转运动,后来演化为磁场被强剪切。根据AR5395演化的分析研究,本文对该活动区产生的耀斑提出两个模型。首先,该活动区的耀斑位形是一个扭转的共生磁流管:许多磁流管的N极一端被旋转运动扭到一起,处于亚稳状态,一旦受到触发就释放出被储存的能量。随着耀斑不断产  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号