首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
I argue that the large-scale departure from axisymmetry of the η Carinae nebula can be explained by the binary star model of η Carinae. The companion diverts the wind blown by the primary star, by accreting from the wind and possibly by blowing its own collimated fast wind (CFW). The effect of these processes depends on the orbital separation, and hence on the orbital phase of the eccentric orbit. The variation of the mass outflow from the binary system with the orbital phase leads to a large-scale departure from axisymmetry along the equatorial plane, as is observed in η Carinae. I further speculate that such a companion may have accreted a large fraction of the mass that was expelled in the Great Eruption of 1850 and the Lesser Eruption of 1890. The accretion process was likely to form an accretion disc, with the formation of a CFW, or jets, on the two sides of the accretion disc. The CFW may have played a crucial role in the formation of the two lobes.  相似文献   

2.
During the past decade, several observational and theoretical works have provided evidence of the binary nature of η Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, η Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of η Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind–wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of η Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of   i ∼ 60°± 10°  , and   i *∼ 35°± 10°  with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as  ∼−40°  , showing that periastron passage occurs shortly after conjunction.  相似文献   

3.
We study the usage of the X-ray light curve, column density towards the hard X-ray source, and emission measure (density square times volume), of the massive binary system η Carinae to determine the orientation of its semimajor axis. The source of the hard X-ray emission is the shocked secondary wind. We argue that, by itself, the observed X-ray flux cannot teach us much about the orientation of the semimajor axis. Minor adjustment of some unknown parameters of the binary system allows to fit the X-ray light curve with almost any inclination angle and orientation. The column density and X-ray emission measure, on the other hand, impose strong constrains on the orientation. We improve our previous calculations and show that the column density is more compatible with an orientation where for most of the time the secondary – the hotter, less massive star – is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage. The 10-week X-ray deep minimum, which results from a large decrease in the emission measure, implies that the regular secondary wind is substantially suppressed during that period. This suppression is most likely resulted by accretion of mass from the dense wind of the primary luminous blue variable star. The accretion from the equatorial plane might lead to the formation of a polar outflow. We suggest that the polar outflow contributes to the soft X-ray emission during the X-ray minimum; the other source is the shocked secondary wind in the tail. The conclusion that accretion occurs at each periastron passage, every five and a half years, implies that accretion had occurred at a much higher rate during the Great Eruption of η Car in the 19th century. This has far reaching implications for major eruptions of luminous blue variable stars.  相似文献   

4.
We have used the RXTE and INTEGRAL satellites simultaneously to observe the high-mass X-ray binary (HMXB) IGR J19140+0951. The spectra obtained in the 3–80 keV range have allowed us to perform a precise spectral analysis of the system along its binary orbit. The spectral evolution confirms the supergiant nature of the companion star and the neutron star nature of the compact object. Using a simple stellar wind model to describe the evolution of the photoelectric absorption, we were able to restrict the orbital inclination angle in the range 38°–75°. This analysis leads to a wind mass-loss rate from the companion star of  ∼5 × 10−8 M yr−1  , consistent with an OB I spectral type. We have detected a soft excess in at least four observations, for the first time for this source. Such soft excesses have been reported in several HMXBs in the past. We discuss the possible origin of this excess, and suggest, based on its spectral properties and occurrences around the superior conjunction, that it may be explained as the reprocessing of the X-ray emission originating from the neutron star by the surrounding ionized gas.  相似文献   

5.
The X-ray binary system GX 301−2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star Wray 977. It has previously been shown that the X-ray orbital light curve is consistent with the existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer ( RXTE )/All-Sky Monitor and pointed observations by the RXTE /Proportional Counter Array over the past decade are analysed. We analyse both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density versus orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of ∼2.5. The quality of the model fits is better for lower inclinations, favouring a higher mass for Wray 977 in its allowed range of  40–60 M  .  相似文献   

6.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

7.
This work presents the first integral field spectroscopy of the Homunculus nebula around η Carinae in the near-infrared spectral region ( J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and  6.0 × 1016  cm, respectively. We also mapped the blue-shifted component of He  i  λ10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc.
We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H  ii region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in η Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5  iii to O7  i . Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the 'Sr-filament' but they are obviously spatially separated, while the blue-shifted component of He  i λ10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.  相似文献   

8.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

9.
Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper, we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion,  σk≈ 15 km s−1  , is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically   i ≥ 25°  . Alternatively, a higher velocity kick distribution,  σk= 265 km s−1  , is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularization of the binary orbits has taken place. We discuss briefly how this might be achieved.  相似文献   

10.
In this paper, we compute theoretically the flux density and the spectral index of the free–free radiation at radio wavelengths produced by shocks in the inner bipolar emission nebula called the little Homunculus around the star η Carinae. The little Homunculus is believed to have formed as a result of the minor eruption suffered by the star in the 1890s. In our model, we consider a simplified interacting stellar wind scenario where the post-outburst η Carinae wind collides with the eruptive outflow (both assumed to be bipolar with conical symmetry). As a result of the interaction, shock-wave structures are formed and generate the development of two polar caps moving in opposite directions. After ∼100 yr (i.e. at present times), the polar caps are located ±2.3 arcsec on each side of the star, and remain embedded within the larger bipolar Homunculus that extends from −8 to +8 arcsec along its major axis. Using observational estimates of the characteristics of the eruptive event of the 1890s, and of the ambient wind powered by η Carinae in the decades after the eruption ended, we study the evolution of the polar caps formed as a result of a sudden increase in the wind velocity and an instantaneous drop in the mass-loss rate (just after the eruption) at the injection radius. We found that the little Homunculus emits continuum radiation that can be detected at radio frequencies and that indeed represents an important contribution to the total free–free emission detected from the η Carinae nebula.  相似文献   

11.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

12.
Recently discovered quasi-periodic oscillations in the X-ray brightness of low-mass X-ray binaries are used to derive constraints on the mass of the neutron star component and the equation of state of neutron star matter. The observations are compared with models of rapidly rotating neutron stars which are calculated by means of an exact numerical method in full relativity. For the equations of state we select a broad collection of models representing different assumptions about the many-body structure and the complexity of the composition of superdense matter. The mass constraints differ from their values in the approximate treatment by ∼10 per cent. Under the assumption that the maximum frequency of the quasi-periodic oscillations originates from the innermost stable orbit, the mass of the neutron star is in the range M ∼1.92–2.25 M. The quasi-periodic oscillation in the Atoll-source 4U 1820−30 in particular is only consistent with equations of state that are rather stiff at high densities, which is explainable, so far, only with pure nucleonic/leptonic composition. This interpretation contradicts the hypothesis that the protoneutron star formed in SN 1987A collapsed to a black hole, since this would demand a maximum neutron star mass below 1.6 M. The recently suggested identification of quasi-periodic oscillations with frequencies of about 10 Hz with the Lense–Thirring precession of the accretion disc is found to be inconsistent with the models studied in this work, unless it is assumed that the first overtone of the precession is observed.  相似文献   

13.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 μJy and a detection of it in the X-rays with a luminosity of about  3 × 1031  erg s−1, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.  相似文献   

14.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

15.
In this paper we report on optical spectroscopic observations of the low-mass X-ray binary 2S 0921–630 obtained with the Very Large Telescope. We found sinusoidal radial velocity variations of the companion star with a semi-amplitude of  99.1 ± 3.1 km s−1  modulated on a period of 9.006 ± 0.007 d, consistent with the orbital period found previously for this source, and a systemic velocity of  44.4 ± 2.4 km s−1  . Owing to X-ray irradiation, the centre of light measured by the absorption lines from the companion star is probably shifted with respect to the centre of mass. We try to correct for this using the so-called K -correction. Conservatively applying the maximum correction possible and using the previously measured rotational velocity of the companion star, we find a lower limit to the mass of the compact object in 2S 0921–630 of   MX sin3 i > 1.90 ± 0.25 M  (1σ errors). The inclination in this system is well constrained since partial eclipses have been observed in X-ray and optical bands. For inclinations in the range  60° < i < 90°  we find  1.90 ± 0.25 < MX < 2.9 ± 0.4 M  . However, using this maximum K -correction we find that the ratio between the mass of the companion star and that of the compact object, q , is 1.32 ± 0.37, implying super-Eddington mass-transfer rates; however, evidence for that has not been found in 2S 0921–630. We conclude that the compact object in 2S 0921–630 is either a (massive) neutron star or a low-mass black hole.  相似文献   

16.
High-speed spectroscopy of two pulsating subdwarf B stars, KPD 2109+4401 and PB 8783, is presented. Radial motions are detected with the same frequencies as reported from photometric observations and with amplitudes of ∼2 km s−1 in two or more independent modes. These represent the first direct observations of surface motion arising from multimode non-radial oscillations in subdwarf B stars. In the case of the sdB+F binary PB 8783, the velocities of both components are resolved; high-frequency oscillations are found only in the sdB star and not the F star. There also appears to be evidence for mutual motion of the binary components. If confirmed, it implies that the F-type companion is ≳1.2 times more massive than the sdB star, while the amplitude of the F-star acceleration over 4 h would constrain the orbital period to lie between 0.5 and 3.2 d.  相似文献   

17.
X-ray binaries     
Summary The various types and classes of X-ray binary are reviewed high-lighting recent results. The high mass X-ray binaries (HMXRBs) can be used to probe the nature of the mass loss from the OB star in these systems. Absorption measurements through one orbital cycle of the supergiant system X1700-37 are well modelled by a radiation driven wind and also require a gas stream trailing behind the X-ray source. In Cen X-3 the gas stream is accreted by the X-ray source via an accretion disk. Changes in the gas stream can cause the disk to thicken and the disk to obscure the X-ray source. How close the supergiant is to corotation seems to be as much a critical factor in these systems as how close it is to filling its Roche lobe. In the Be star X-ray binaries a strong correlation between the neutron stars rotation period and its orbital period has been explained as due to the neutron star being immersed in a dense, slow moving equatorial wind from the Be star. For the X-ray pulsars in the transient Be X-ray binaries a centrifugal barrier to accretion is important in determining the X-ray lightcurve and the spin evolution. The X-ray orbital modulations from the low mass X-ray binaries, LMXRBs, include eclipses by the companion and/or periodic dipping behaviour from structure at the edge of the disk. The corresponding optical modulations show a smooth sinusoidal like component and in some cases a sharp eclipse by the companion. The orbital period of the LMXRB XB1916-05 is 1% longer in the optical compared to that given by the X-ray dip period. The optical period has been interpreted as the orbital period, but this seems inconsistent with the well established view of the origin of the X-ray modulations in LMXRB. A new model is presented that assumes the X-ray dip period is the true orbital period. The 5.2 h eclipsing LMXRB XB2129+47 recently entered a low state and optical observations unexpectedly reveal an F star which is too big to fit into the binary. This is probably the first direct evidence that an X-ray binary is part of a hierarchical triple. Finally the class of X-ray binaries containing black hole candidates is reviewed focusing on the value of using X-ray signatures to identify new candidates.  相似文献   

18.
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3–20 keV energy range were fitted ∼6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at ∼6.4 keV in the restricted energy range of 0.3–10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.  相似文献   

19.
A succession of near-infrared (near-IR) spectroscopic observations, taken nightly throughout an entire cycle of SS 433's orbit, reveal (i) the persistent signature of SS 433's accretion disc, having a rotation speed of  ∼500 km s−1  , (ii) the presence of circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler & Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind, with a terminal velocity of  ∼1500 km s−1  . The increased wind terminal velocity results in a mass-loss rate of  ∼10−4 M yr−1  . These, together with the newly (upwardly) determined masses for the components of the SS 433 system, result in an accurate diagnosis of the extent to which SS 433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semiminor axis of the orbit which is given by     , where e is the eccentricity. Our relatively spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-γ (Brγ) line in this binary system, and their physical origins. With this line being dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (∼15 per cent) contribution, we caution against use of the unresolved Brγ line intensity as an 'accretion signature' in X-ray binaries or microquasars in any quantitative way.  相似文献   

20.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号