首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A complex filament composed by a main body a polar filament and a tail—a small filament situated between active regions, was observed between 6 and 14 January 2001. A decaying active region plays the role of attractor for this filament. We have studied the dynamics of the filament which disappeared in a spectacular CME, produced after a helical up-awarded movement of plasma in the filaments loops.  相似文献   

2.
A filament eruption, accompanied by a B9.5 flare, coronal dimming, and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5°, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 Å stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 Å and Hα? show that when it becomes emissive in He II, it tends to disappear in Hα?, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.  相似文献   

3.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

4.
Bibhas R. De 《Solar physics》1973,31(2):437-447
A mechanism is suggested for the formation of loop-type prominences in solar-active regions following flare events. The mechanism is based on the already existing idea of compression of a coronal plasma element resulting in enhanced radiation and consequent cooling of the element. A model is suggested for such a compression based on the concept of a contracting, force-free filamentary structure. If the current in a filament increases with time, then there is a radial contraction of the filament. Since the coronal plasma is frozen into the magnetic field lines of the filament, a contraction of the filament causes a compression of the filamentary plasma. This model of compression is shown to be in approximate qualitative and quantitative agreement with observations.  相似文献   

5.
Recent observations of Martin, Bilimoria, and Tracadas (1995) have revealed two new magnetic and structural classes for solar filaments and filament channels. The magnetic classes are called sinistral and dextral, while the structural classes are left-bearing and right-bearing. Dextral filaments dominate in the northern hemisphere and sinistral in the southern. A model consistent with the observations is developed with magnetic sources that represent the network flux on both sides of the channel and extra concentrations of flux that produce the strong field component along the channel. We suggest that it is the imbalance of flux locations along the channel that creates the field of a filament channel. The resulting separatrix surfaces have distinct upper and lower boundaries that may produce the upper boundary of the filament cavity or filament and the lower boundary of the filament. The model is applied to a specific filament channel, with discrete sources and sinks that represent the flux observed in a photospheric magnetogram. The resulting three-dimensional field lines near the filament location are low-lying and possess dips.  相似文献   

6.
We report the discovery of a 40 arcsec long X-ray filament in the core of the cluster of galaxies Abell 1795. The feature coincides with an H α +N  ii filament found by Cowie et al. in the early 1980s and resolved into at least two U -band filaments by McNamara et al. in the mid-1990s. The (emission-weighted) temperature of the X-ray emitting gas along the filament is 2.5–3 keV, as revealed by X-ray colour ratios. The deprojected temperature will be less. A detailed temperature map of the core of the cluster presented. The cD galaxy at the head of the filament is probably moving through or oscillating in the cluster core. The radiative cooling time of the X-ray emitting gas in the filament is about     which is similar to the age of the filament obtained from its length and velocity. This suggests that the filament is produced by cooling of the gas from the intracluster medium. The filament, much of which is well separated from the body of the cD galaxy and its radio source, is potentially of great importance in helping to understand the energy and ionization source of the optical nebulosity common in cooling flows.  相似文献   

7.
We present an automatic solar filament detection algorithm based on image enhancement, segmentation, pattern recognition, and mathematical morphology methods. This algorithm cannot only detect filaments, but can also identify spines, footpoints, and filament disappearances. It consists of five steps: (1) The stabilized inverse diffusion equation (SIDE) is used to enhance and sharpen filament contours. (2) A new method for automatic threshold selection is proposed to extract filaments from local background. (3) The support vector machine (SVM) is used to differentiate between sunspots and filaments. (4) Once a filament is identified, morphological thinning, pruning, and adaptive edge linking methods are used to determine the filament properties. (5) Finally, we propose a filament matching method to detect filament disappearances. We have successfully applied the algorithm to Hα full-disk images obtained at Big Bear Solar Observatory (BBSO). It has the potential to become the foundation of an automatic solar filament detection system, which will enhance our capabilities of forecasting and predicting geo-effective events and space weather.  相似文献   

8.
A process is suggested by which a coronal structure (with underlying filament) may form between a polar crown structure and a low-latitude bipolar region. During the ascending phase of the solar cycle the identifying underlying filament should lie poleward and westward of the active region, but during the descending phase it should appear as an eastward extension of the filament separating leader and follower photospheric fields within the active region.  相似文献   

9.
We observed the line-of-sight magnetic field in the chromosphereand photosphere of a large quiescent filament on the solar disk on September 6, 2001 using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. The chromospheric and photospheric magnetograms together with Hβ filtergrams of the filament were examined. The filament was located on the neutral line of the large scale longitudinal magnetic field in the photosphere and the chromosphere. The lateral feet of the filament were found to be related to magnetic structures with opposite polarities. Two small lateral feet are linked to weak parasitic polarity. There is a negative magnetic structure in the photosphere under a break of the filament. At the location corresponding to the filament in the chromospheric magnetograms, the magnetic strength is found to be about 40-70 Gauss (measuring error about 39 Gauss). The magnetic signal indicates the amplitude and orientation of the internal magnetic field in the filament. We discuss several possible causes which may produce such a measured signal. A twisted magnetic configuration inside the filament is suggested .  相似文献   

10.
Mackay  D. H.  Priest  E. R.  Gaizauskas  V.  van Ballegooijen  A. A. 《Solar physics》1998,180(1-2):299-312
In the last few years new observations have shown that solar filaments and filament channels have a surprising hemispheric pattern. To explain this pattern, a new theory for filament channel and filament formation is put forward. The theory describes the formation of a specific type of filament, namely the intermediate filament which forms either between active regions or at the boundary of an active region. It describes the formation in terms of the emergence of a sheared activity complex. The complex then interacts with remnant flux and, after convergence and flux cancellation, the filament forms in the channel. A key feature of the model is the net magnetic helicity of the complex. With the correct sign a filament channel can form, but with the opposite sign no filament channel forms after convergence. It is shown how the hemispheric pattern of helicity in emerging flux regions produces the observed hemispheric pattern for filaments.  相似文献   

11.
A?filament and its channel close to the solar disk were observed in the complete hydrogen Lyman spectrum, and in several EUV lines by the SUMER (Solar Ultraviolet Measurement of Emitted Radiation) and CDS (Coronal Diagnostic Spectrometer) spectrographs on the SoHO satellite, and in H?? by ground-based telescopes during a multi-instrument campaign in May 2005. It was a good opportunity to get an overview of the volume and the density of the cold plasma in the filament channel; these are essential parameters for coronal mass ejections. We found that the width of the filament depends on the wavelength in which the filament is observed (around 15?arcsec in H??, 30?arcsec in L??, and 60?arcsec in EUV). In L?? the filament is wider than in H?? because cool plasma, not visible in H??, is optically thick at the L?? line center, and its presence blocks the coronal emission. We have derived physical plasma properties of this filament fitting the Lyman spectra and H?? profiles by using a 1D isobaric NLTE model. The vertical temperature profile of the filament slab is flat (T??7000?K) with an increase to ???20?000?K at the top and the bottom of the slab. From an analysis of the L?? and H?? source functions we have concluded that these lines are formed over the whole filament slab. We have estimated the geometrical filling factor in the filament channel. Its low value indicates the presence of multi-threads.  相似文献   

12.
1 INTRODUCTION Filaments are cool, dense material suspended in the hot, tenuous corona. It is widely accepted that the global magnetic field surrounding the filaments plays a key role in their formation, structure and stability (Tandberg-Hanssen1995). Fil…  相似文献   

13.
A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km?s?1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.  相似文献   

14.
A large filament was observed during a multi-wavelength coordinated campaign on June 19, 1998 in the Hα line with the Swedish Vacuum Solar Telescope (SVST) at La Palma, in the coronal lines Fe ix/x 171 Å and Fe xi 195 Å with the Transition Region and Coronal Explorer (TRACE) and in EUV lines with the SOHO/CDS spectrometer and the hydrogen Lyman series with the SOHO/SUMER spectrometer. Because of its high-latitude location, it is possible to disentangle the physical properties of the Hα filament and the filament channel seen in EUV lines. TRACE images point out a dark region fitting the Hα fine-structure threads and a dark corridor (filament channel), well extended south of the magnetic inversion line. A similar pattern is observed in the CDS EUV-line images. The opacity of the hydrogen and helium resonance continua at 171 Å is almost two orders of magnitude lower than that at the Hi head (912 Å) and thus similar to the opacity of the Hα line. Since we do not see the filament channel in Hα, this would imply that it should also be invisible in TRACE lines. Thus, the diffuse dark corridor is interpreted as due to the coronal ‘volume blocking’ by a cool plasma which extends to large altitudes. Such extensions were also confirmed by computing the heights from the projection geometry and by simulations of the CDS and TRACE line intensities using the spectroscopic model of EUV filaments (Heinzel, Anzer, and Schmieder, 2003). Finally, our NLTE analysis of selected hydrogen Lyman lines observed by SUMER also leads to a conclusion that the dark filament channel is due to a presence of relatively cool plasma having low densities and being distributed at altitudes reaching the Hα filament.  相似文献   

15.
In this study, we present the three-dimensional (3D) configuration of a filament observed by STEREO and the Global High Resolution H-alpha Network (GHN) in EUV 304 Å and Hα line center, respectively. This was the largest filament located close to the active region NOAA 10956 that produced a small B9.6 flare and two Coronal Mass Ejections (CMEs) on 19 May 2007. The 3D coordinates of multiple points traced along this filament were reconstructed by triangulation from two different aspect angles. The two STEREO (A and B) spacecraft had a separation angle α of 8.6 degree on 19 May 2007. The “true” heights of the filament were estimated using STEREO images in EUV 304 and Hα images, respectively. Our results show that EUV emission of the filament originates from higher locations than the Hα emission. We also compare the measured reconstructed heights of the filaments in EUV with those reported in previous studies.  相似文献   

16.
The paper is a contribution to the study of two-ribbon flares. A variety of observational material, i.e. Hα pictures, radio spectrum in the frequency band of 150–1000 MHz, radio map at 6 cm, fluxes at other frequencies, magnetograms and X-ray flux in a broad energy interval, enabled us to study the development of the 16 May, 1981 flare. The onset of the flare could be described by the model of Van Tend and Kuperus. A diminishing of the magnetic shear during the activation of the filament was observed. From radio and X-ray data it was found that pulsed acceleration took place in the region under the rising filament, the electrons propagating in a limited region both upwards to greater heights and downwards into the footpoints. Internal oscillations of the filament were observed. A manifestation of the primary process of interplanetary shock-wave generation was found. The 6 cm radio sources could be localized in the footpoints of magnetic loops.  相似文献   

17.
张延安  宋慕陶  季海生 《天文学报》2002,43(3):236-241,T001,T002
2000年9月14-18日在紫金山天文台赣榆观测站观测到太阳上有一个中小型活动区,黑子面积不大,但有一个奇特的活动区暗条,16日产生了一个Ⅲb级耀斑,有较强的地球物理效应。计算该区的磁结构,结果发现此磁绳状暗条与磁中性线附近低磁弧系相关,磁场在磁绳附近有强剪切,QSL分析显示三维磁重联能够在暗条附近出现,这可解释大耀斑的形成。  相似文献   

18.
We describe a partial filament eruption on 11 December 2011 that demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory-Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic-tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux-rope, the radial expansion of the flux-rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.  相似文献   

19.
We report observations of the formation of two filaments?–?one active and one quiescent, and their subsequent interactions prior to eruption. The active region filament appeared on 17 May 2007, followed by the quiescent filament about 24 hours later. In the 26 hour interval preceding the eruption, which occurred at around 12:50 UT on 19 May 2007, we see the two filaments attempting to merge and filament material is repeatedly heated suggesting magnetic reconnection. The filament structure is observed to become increasingly dynamic preceding the eruption with two small hard X-ray sources seen close to the active part of the filament at around 01:38 UT on 19 May 2007 during one of the activity episodes. The final eruption on 19 May at about 12:51 UT involves a complex CME structure, a flare and a coronal wave. A magnetic cloud is observed near Earth by the STEREO-B and WIND spacecraft about 2.7 days later. Here we describe the behaviour of the two filaments in the period prior to the eruption and assess the nature of their dynamic interactions.  相似文献   

20.
Kippenhahn-Schluter模型回路和Kupperus-Raadu模型回路是暗条电流回路的两种极端形式,本文则从一般回路形式来研究暗条电流与暗条高度的关系。结果发现:当暗条电流与活动区磁场作用的Lorentz力方向与暗条重力方向相同时,流入活动区光球层的电流越大,其在暗条电流中所占的比例越大,暗条越稳定。当二力方向相反时,流入活动区光球层的电流越大,其在暗条电流中所占的比例越大,暗条越不稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号