首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We present a quantitative estimate of the relativistic corrections to the thermal SZ power spectrum produced by the energetic electrons in massive clusters. The corrections are well within 10% for current experiments with working frequencies below v < 100 GHz, but become non-negligible at high frequencies v > 350 GHz. Moreover, the corrections appear to be slightly smaller at higher l or smaller angular scales. We conclude that there is no need to include the relativistic corrections in the theoretical study of the SZ power spectrum especially at low frequencies unless the SZ power spectrum is used for precision cosmology.  相似文献   

2.
We consider the distortion in the cosmic microwave background (CMB) resulting from galactic winds at high redshift. Winds outflowing from galaxies have been hypothesized to be possible sources of metals in the intergalactic medium, which is known to have been enriched to 10−2.5 Z at z ∼3. We model these winds as functions of mass of the parent galaxy and redshift, assuming that they activate at a common initial redshift, z in, and calculate the mean y -distortion and the angular power spectrum of the distortion in the CMB. We find that the thermal Sunyaev–Zel'dovich (SZ) effect resulting from the winds is consistent with previous estimates. The distortion arising from the kinetic SZ (kSZ) effect is, however, found to be more important than the thermal SZ (tSZ) effect. We find that the distortion resulting from galactic winds is an important contribution to the power spectrum of distortion at very small angular scales ( l ∼104). We also find that the power spectrum resulting from clustering dominates the Poisson power spectrum for l ≤(4–5)×105. We show explicitly how the combined power spectrum from wind dominates over that of clusters at 217 GHz, relevant for PLANCK . We also show how these constraints change when the efficiency of the winds is varied.  相似文献   

3.
We have produced a prototype broadband, low-sidelobe conical corrugated feed horn suitable for measurements of the Cosmic Microwave Blackground (CMB) radiation in the frequency band 120–150 GHz. The antenna is a first prototype for the Low Frequency Instrument array in ESA's PLANCK mission, a space project dedicated to CMB anisotropy mesurements in the 30–900 GHz range. We describe the fabrication method, based on silver electro-formation, and present the two-dimensional antenna beam pattern measured at 140 GHz with a milimeter-wave automated scalar test range. The beam has good symmetry in the E and H planes with a far sidelobe level approaching –60 dB at angles 80°. An upper limit to the return loss was measured to be –21 dB.  相似文献   

4.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

5.
The Sunyaev–Zel'dovich (SZ) effect and the Faraday rotation from haloes are examined over a wide mass range, including gas condensation and magnetic field evolution. Contributions to the cosmic microwave background (CMB) angular power spectrum are evaluated for galaxy clusters, galaxy groups and galaxies. Smaller mass haloes are found to play a more important role than massive haloes for the B -mode polarization associated with the SZ CMB anisotropies. The B modes from the Faraday rotation dominate the secondary B modes caused by gravitational lensing at  ℓ > 3000  . Measurement of B -mode polarization in combination with the SZ power spectrum can potentially provide important constraints on intracluster magnetic field and gas evolution at early epochs.  相似文献   

6.
We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 μK(CMB).  相似文献   

7.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

8.
《New Astronomy》2004,9(2):159-171
The angular power spectrum of the Sunyaev–Zeldovich (SZ) effect is calculated in the ΛCDM cosmological model with the aim of investigating its detailed dependence on the cluster population, gas morphology, and gas evolution. We calculate the power spectrum for three different mass functions, compute it within the framework of isothermal and polytropic gas distributions, and explore the effect of gas evolution on the magnitude and shape of the power spectrum. We show that it is indeed possible to explain the ‘excess’ power measured by the CBI experiment on small angular scales as originating from the SZ effect without (arbitrary) rescaling the value of σ8, the mass variance parameter. The need for a self-consistent choice of the basic parameters characterizing the cluster population is emphasized. In particular, we stress the need for a consistent choice of the value of σ8 extracted from fitting theoretical models for the mass function to the observed cluster X-ray temperature function, such that it agrees with the mass–temperature relation used to evaluate the cluster Comptonization parameter. Our treatment includes the explicit spectral dependence of the thermal component of the effect, which we calculate at various frequencies. We find appreciable differences between the nonrelativistic and relativistic predictions for the power spectrum even for this superposed contribution from clusters at the full range of gas temperatures.  相似文献   

9.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   

10.
We use the Point Source Catalogue Redshift Survey galaxy redshift catalogue combined with constrained simulations based on the IRAS 1.2-Jy galaxy density field to estimate the contribution of hot gas in the local universe to the Sunyaev–Zeldovich (SZ) effect on a large scale. We produce a full-sky healpix map predicting the SZ effect from clusters as well as diffuse hot gas within  80  h −1 Mpc  . Performing cross-correlation tests between this map and the WMAP data in pixel, harmonic and wavelet space we can put an upper limit on the effect. We conclude that the SZ effect from diffuse gas in the local universe cannot be detected in current cosmic microwave background (CMB) data and is not a large-scale contaminating factor  (ℓ < 60)  in studies of CMB angular anisotropies. We derive an upper limit for the mean temperature decrement of  Δ T < 0.33 μK  at the 2σ confidence level for the 61-GHz frequency channel. However, for future high-sensitivity experiments observing at a wider range of frequencies, the predicted large-scale SZ effect could be of importance.  相似文献   

11.
We discuss two experiments – the Very Small Array (VSA) and the Arcminute MicroKelvin Imager (AMI) – and their prospects for observing the CMB at high angular multipoles. Whilst the VSA is primarily designed to observe primary anisotropies in the CMB, AMI is designed to image secondary anisotropies via the Sunyaev–Zel’dovich effect. The combined ℓ-range of these two instruments is between ℓ=150 and 10,000.  相似文献   

12.
Kaufmann  P.  Trottet  G.  Giménez de Castro  C.G.  Costa  J.E.R.  Raulin  J.-P.  Schwartz  R.A.  Magun  A. 《Solar physics》2000,197(2):361-374
We present an analysis of the time profiles detected during a solar impulsive flare, observed at one-millimeter radio frequency (48 GHz) and in three hard X-ray energy bands (25–62, 62–111, and 111–325 keV) with high sensitivity and time resolution. The time profiles of all emissions exhibit fast time structures of 200–300 ms half power duration which appear in excess of a slower component varying on a typical time scale of 10 s. The amplitudes of both the slow and fast variations observed at 48 GHz are not proportional to those measured in the three hard X-ray energy bands. However, the fast time structures detected in both domains are well correlated and occur simultaneously within 64 ms, the time resolution of the hard X-ray data. In the context of a time-of-flight flare model, our results put strong constraints on the acceleration time scales of electrons to MeV energies.  相似文献   

13.
The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarimeter designed to measure the low-frequency and low-ℓ characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 μK/deg2 from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.  相似文献   

14.
We report on the first observation of the Sunyaev–Zel'dovich (SZ) effect, a distortion of the Cosmic Microwave Background radiation (CMB) by hot electrons in clusters of galaxies, with the Diabolo experiment at the IRAM 30 m telescope. Diabolo is a dual-channel 0.1 K bolometer photometer dedicated to the observation of CMB anisotropies at 2.1 and 1.2 mm. A significant brightness decrement in the 2.1 mm channel is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsec beam and 3 arcmin beamthrow, this is the highest angular resolution observation to date of the SZ effect. Interleaving integrations on targets and on nearby blank fields have been performed in order to check and correct for systematic effects. Gas masses can be directly inferred from these observations.  相似文献   

15.
Several recent papers have studied lensing of the CMB by large-scale structures, which probes the projected matter distribution from z=103 to z0. This interest is motivated in part by upcoming high resolution, high sensitivity CMB experiments, such as APEX/SZ, ACT, SPT or Planck, which should be sensitive to lensing. In this paper, we examine the reconstruction of the large-scale dark matter distribution from lensed CMB temperature anisotropies. We go beyond previous work in using numerical simulations to include higher order, non-Gaussian effects and find that the convergence and its power spectrum are biased, with the bias increasing with the angular resolution. We also study the contamination by the kinetic Sunyaev–Zel'dovich signal, which is spectrally indistinguishable from lensed CMB anisotropies, and find that it leads to an overestimate of the convergence. We finish by estimating the sensitivity of the previously cited experiments and find that all of them could detect the lensing effect, but would be biased at around the 10% level.  相似文献   

16.
We study the non-Gaussianity induced by the Sunyaev–Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP . This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP –2MASS cross-correlations by a factor f 2, which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.  相似文献   

17.
In the era of high precision CMB measurements, systematic effects are beginning to limit the ability to extract subtler cosmological information. The non-circularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. The effect of non-circular beam on the power spectrum is important at multipoles larger than the beam-width. For recent experiments with high angular resolution, optimal methods of power spectrum estimation are computationally prohibitive and sub-optimal approaches, such as the Pseudo-Cl method are used. We provide an analytic framework for correcting the power spectrum for the effect of beam non-circularity and non-uniform sky coverage (including incomplete/masked sky maps). The approach is perturbative in the distortion of the beam from non-circularity allowing for rapid computations when the beam is mildly non-circular. We advocate that when the non-circular beams are important, it is computationally advantageous to employ ‘soft’ azimuthally apodized masks whose spherical harmonic transforms die down fast with m.  相似文献   

18.
We investigate a spatially flat cold dark matter model (with the matter density parameter     with a primordial feature in the initial power spectrum. We assume that there is a bump in the power spectrum of density fluctuations at wavelengths     , which corresponds to the scale of superclusters of galaxies . There are indications for such a feature in the power spectra derived from redshift surveys and also in the power spectra derived from peculiar velocities of galaxies. We study the mass function of clusters of galaxies, the power spectrum of the cosmic microwave background (CMB) temperature fluctuations, the rms bulk velocity and the rms peculiar velocity of clusters of galaxies. The baryon density is assumed to be consistent with the big bang nucleosynthesis value. We show that with an appropriately chosen feature in the power spectrum of density fluctuations at the scale of superclusters, the mass function of clusters, the CMB power spectrum, the rms bulk velocity and the rms peculiar velocity of clusters are in good agreement with the observed data.  相似文献   

19.
《New Astronomy》2003,8(3):231-253
We discuss the four-point correlation function, or the trispectrum in Fourier space, of CMB temperature and polarization anisotropies due to the weak gravitational lensing effect by intervening large scale structure. We discuss the squared temperature power spectrum as a probe of this trispectrum and, more importantly, as an observational approach to extracting the power spectrum of the deflection angle associated with the weak gravitational lensing effect on the CMB. We extend previous discussions on the trispectrum and associated weak lensing reconstruction from CMB data by calculating non-Gaussian noise contributions, beyond the previously discussed dominant Gaussian noise. Non-Gaussian noise contributions are generated by lensing itself and by the correlation between the lensing effect and other foreground secondary anisotropies in the CMB such as the Sunyaev–Zel’dovich (SZ) effect. When the SZ effect is removed from temperature maps using its spectral dependence, we find these additional non-Gaussian noise contributions to be an order of magnitude lower than the dominant Gaussian noise. If the noise-bias due to the dominant Gaussian part of the temperature squared power spectrum is removed, then these additional non-Gaussian contributions provide the limiting noise level for the lensing reconstruction. The temperature squared power spectrum allows a high signal-to-noise extraction of the lensing deflections and a confusion-free separation of the curl (or B-mode) polarization due to inflationary gravitational waves from that due to lensed gradient (or E-mode) polarization. The small angular scale temperature and polarization anisotropy measurements provide a novel approach to weak lensing studies, complementing the approach based on galaxy ellipticities.  相似文献   

20.
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth–Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the “Dark Ages”, giving a value for the electron scattering optical depth of 0.17 ± 0.04. The simplest ΛCDM model with n=1 and Ωtot=1 fixed provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号