首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precambrian iron ores of the Singhbhum-North Orissa region occur in eastern India as part of the Iron Ore Group (IOG) within the broad horse-shoe shaped synclinorium. More than 50% of Indian iron ore reserves occur in this region. Massive-hard, flaky-friable, blue dust and lateritic varieties of iron ores are the major ore types, associated with banded hematite, jasper and shales. These ores could have formed as a result of supergene enrichment through gradual but extensive removal of silica, alumina and phosphorus from banded iron formations and ferruginous shale. Attempts for optimal utilization of these resources led to various ore characterization studies using chemical analysis, ore and mineral petrography, XRD analysis, SEM and electron probe micro analysis (EPMA). The ore chemistry indicates that the massive hard ores and blue dust have high iron, low alumina and phosphorus contents. Because of high quality, these ores do not require any specialized beneficiation technique for up-gradation. However, flaky-friable, lateritised and goethitic ores are low in iron, high in alumina and phosphorus contents, requiring specific beneficiation techniques for up-gradation in quality. XRD, SEM and ore microscopic studies of massive hard ores indicate the presence of hematite and goethite, while flaky and lateritic ores show a higher concentration of goethite, kaolinite, gibbsite and hematite. EPMA studies show the presence of adsorbed phosphorous as fine dust in the hard ores. Sink and float studies reveal that most of the gangue minerals are not completely liberated in the case of goethitic and lateritic ores, even at finer fractions.  相似文献   

2.
The major Gushan iron oxide deposit, typical of the Middle‐Lower Yangtze River Valley, is located in the eastern Yangtze craton. Such deposits are generally considered to be genetically related to Yanshanian subvolcanic‐volcanic rocks and are temporally‐spatially associated with ca. 129.3–137.5 Ma dioritic porphyries. The latter have a very narrow 87Sr/86Sr range of 0.7064 to 0.7066 and low ?Nd(t) values of ?5.8 to ?5.7, suggesting that the porphyries were produced by mantle‐derived magmas that were crustally contaminated during magma ascent. The ore bodies occur mainly along the contact zone between dioritic porphyries and the sedimentary country rocks. The most important ore types are massive and brecciated ores which together make up 90 vol.‐% of the deposit. The massive type generally occurs as large veins consisting predominantly of magnetite (hematite) with minor apatite. The brecciated type is characterized by angular fragments of wall‐rocks that are cemented by fine‐grained magnetite. Stockwork iron ores occur as irregular veins and networks, especially with pectinate structure; they are composed of low‐temperature minerals (e.g. calcite), which indicate a hydrothermal process. The similar rare earth element patterns of apatite from the massive ores, brecciated ores and the porphyries, coupled with high‐temperature fluids (1000°C) suggest that they are magmatic in origin. Furthermore, melt flow structure commonly developed in massive ores and the absence of silicate minerals and cumulate textures suggest that the iron ores formed by the separation of an immiscible oxide melt from the silicate melt rather than by crystal fractionation. Combined with theoretical and experimental studies, we propose that the introduction of phosphorus due to crustal contamination during mantle‐derived magma ascent could have been a crucial factor that led to the formation of an immiscible oxide melt from the silicate magma.  相似文献   

3.
冀东地区柞栏杖子BIF出露于绿片岩相—低角闪岩相朱杖子岩群变质岩中。铁矿石主要由石英和磁铁矿组成,还含有少量透闪石和黑云母。主量元素主要为Si O2、Fe2O3和Fe O,其次为少量的Ca O和Mg O。较低的Al2O3含量、极低的Ti O2含量和高场强元素(HFSE)暗示,铁矿石中陆源碎屑物质含量很低。铁矿石的稀土元素含量较低,稀土元素配分模式特征为轻稀土元素相对亏损、重稀土元素相对富集。较明显的Eu正异常、轻微的Y正异常及较高的Y/Ho值的稀土元素特征,类似于高温热液和海水的混合热液,暗示成矿物质主要来自于海水和高温热液。对柞栏杖子BIF矿体夹层黑云斜长变粒岩进行SHRIMP锆石U-Pb定年,207Pb/206Pb年龄加权平均值为2572±8Ma(MSWD=5.8),可代表柞栏杖子BIF的形成年龄。综合前人研究,认为冀东地区变质级别不同的BIF物质来源相同、形成年代相近,BIF的变质可能和2500Ma左右华北克拉通东部陆块发生的地幔岩浆底侵事件有关。  相似文献   

4.
智博铁矿床位于新疆西天山阿吾拉勒成矿带东段,主要赋矿围岩为石炭系大哈拉军山组安山岩、玄武质安山岩和火山碎屑岩.该矿床主要有东、中、西3个矿区,其中以东矿区为主矿区.矿体主要呈层状、似层状、厚板状和透镜状.金属矿物以磁铁矿为主,含有少量黄铁矿、赤铁矿和黄铜矿.矿石构造以块状和浸染状构造为主,此外还有角砾状构造、条带状构造...  相似文献   

5.
Oolitic iron ores are typified, and their morphology and composition are studied. Special attention is focused on the character of distribution of valuable and harmful admixtures and determination of the principal minerals concentrating these elements. As a result of this study, three types of ores are identified, such as “loose” ores, cemented ores with glauconite–chlorite–clay cement, and well-cemented ores with siderite cement. The morphology and composition of the ore oolites are characterized. The forms of occurrence of calcium phosphates (anapaite) and phosphates of rare-earth elements (monazite, cularite) that are related to the harmful phosphorus admixture are described. According to the analysis of the elemental composition, the fractions of (–1…+0.2) and (–1…+0.1) mm in the western and eastern segments, respectively, may be promising for processing.  相似文献   

6.
Exploitation of low-grade iron ore would be quite unique in a South African context as South Africa is well endowed with high-grade iron ore resources. Low-grade iron ore, defined as containing between 20 and 47% iron, is thought to be the primary iron-bearing lithology from which most high-grade ore deposits formed, through different processes of enrichment. The low-grade iron ores in the Northern Province represent meta-banded iron formations (BIFs), with an average iron content of about 36%. The main iron-bearing mineral is magnetite. The Northern Province ores have to be milled to sizes smaller than 150 μm in order to liberate the iron minerals from the host rock, and beneficiation is accomplished through a series of magnetic separation processes. Irrespective of the in situ quality of the ore, final concentrates of exceptionally good quality with more than 69% iron and very low contaminant levels can be produced. This, combined with mass yields of between 40 and 50% and iron recoveries greater than 80%, are excellent for this type of iron ore deposit. The beneficiation products are suitable for use in iron- and steel-making processes. Received: 4 July 1996 / Accepted: 7 January 1997  相似文献   

7.
东昆仑野马泉地区矽卡岩矿床地质特征及控矿条件   总被引:12,自引:1,他引:11  
野马泉地区蕴藏有丰富的矽卡岩型铁、铜、铅、锌、银矿床等,是东昆仑地区重要的多金属矿产地之一。对野马泉多金属矿床的产状、矿物共生组合、矿石结构构造、围岩蚀变类型等进行了研究,查明矿床主要产于花岗岩与围岩的接触面及其附近的断裂带中,其形成与区域晚古生代-早中生代构造岩浆旋回末期的岩浆活动关系密切,属岩浆矽卡岩型矿床。  相似文献   

8.
The Xiangquan Tl deposit, located in the northern part of the Middle–Lower Yangtze Valley metallogenic belt, eastern China, is the only known Tl-only deposit. It is hosted in micritic limestone, marl and mudstone of the Lower Ordovician Lunshan Formation. The orebodies are controlled by the Xiao–Xiaolongwang–Dalongwang anticline and two reverse faults, and are generally stratabound and lenticular. Tl is only ore metal contained in disseminated, massive, brecciated and banded ores. The ore is composed of Tl-bearing pyrite, and gangue minerals quartz, fluorite, barite and carbonate. Alteration minerals include fluorite, barite, fine grained quartz and carbonate. Tl occurs isomorphously replacing iron in the lattice of pyrite, and less commonly as tiny independent Tl-bearing minerals which may be lafossaite (TlAsS2) or lorandite (TlCl) appearing as 0.1–1 μm-sized cubic crystals. Xiangquan is a submarine sedimentary deposit and demonstrates that Tl, as a normally dispersed element, can form not only part of poly-metallic deposits but also as independent Tl deposits.  相似文献   

9.
Most of the U occurrences situated at the western edge of the Bohemian Massif show in their upper parts secondary U minerals. The immigration (P, V, As and Se) from the country rocks and the ore body, via saprolite and paleosoils into the secondary ore minerals is investigated. The P content is suggested to be closely related to hydromorphic paleosoils. From those intermediate stages it may have been brought into the upper parts of the vein structures. No laterogenic impoverishment in the wall rocks with respect to phosphorus or apatite could be determined. The arsenic distributions is also governed as at other sulfide deposits by underlying sulfides and reducing conditions of a primary hypogene ore zone, whereas vanadium content in U secondary minerals is closely related to the enclosing country rocks. Granites, on account of their low content in mafic minerals, have low V contents in U secondary minerals. Besides the Schwarzach Area, U ore mineralisations from other U occurrences have been investigated. Some of the U deposits are certainly of “per ascensum” origin and their secondary U mineralisation can well be interpreted as having been derived from the underlying primary “black ores”. However, some mineralisations cannot be classified with certainty as being “per ascensum”. They include some properties pointing to “per ascensum” (e. g. sulfide association) as well as characteristics typical for “per descensum” (small depth, large amounts of U-VI minerals). The mode of formation may in some cases be as follows: Variscan or Alpine ore mineralisations of no economic significance may have formed a reducing environment and caused U to be concentrated. Younger redistribution processes influenced by modern tectonics (uplifting) and the fluviatile drainage pattern have taken place and in some cases destroyed the primary deposits or enhanced the ore mineralisation. These processes roughly resemble those described from sandstone — hosted roll front deposits.  相似文献   

10.
The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.  相似文献   

11.
Detrital iron deposits (DID) are located adjacent to the Precambrian bedded iron deposit (BID) of Joda near the eastern limb of the horseshoe-shaped synclinorium, in the Bonai–Keonjhar belt of Orissa. The detrital ores overlie the Dhanjori Group sandstone as two isolated orebodies (Chamakpur and Inganjharan) near the eastern and western banks of the Baitarani River, respectively. The DID occur as pebble/cobble conglomerates containing iron-rich clasts cemented by goethite. Mineralogy, chemistry and lamination of these clasts are similar to that found in the nearby BID ores. Enrichment of trace and rare-earth elements in the DID relative to the BID is attributed to their concentration during the precipitation of cementing material. The detrital iron orebodies formed when Proterozoic weathering processes eroded pre-existing BID outcrops located on the Joda Ranges, and the resulting detritus accumulated in the paleochannels. In situ dissolution in association with abundant organic material produced Fe-saturated groundwater, which re-precipitated as goethite within the aggraded channel to cement the detritals. Growth of microplaty hematite in the goethite matrix suggests some level of subsequent burial metamorphism.  相似文献   

12.
查明铼在矿石矿物中的赋存状态是对铼进行综合回收的前提。以往研究缺乏针对德兴富家坞矿床铜钼矿石中铼的赋存状态研究。对此,本文通过化学分析、岩矿鉴定、电子探针分析、筛析试验和平衡配分等方法和手段,对富家坞矿床中蚀变花岗闪长斑岩型和千枚岩型铜钼矿石进行了系统的工艺矿物学研究,查明了矿石中铼的赋存状态及影响其回收利用的因素。研究未发现独立铼矿物,铼分散分布于辉钼矿、黄铜矿、黄铁矿、方铅矿和锆石等矿物中,含量范围为0.001%~0.267%。辉钼矿为铼的富集和回收的目标矿物,其铼含量高达684×10~(-6),且铼在不同粒级中与钼的品位变化具趋同性。对两类铜钼矿石的铼进行综合回收时需考虑辉钼矿含量及脉石矿物种类的差异性,分类利用矿石;同时,对矿石进行破碎细磨时,应避免矿石过粉碎问题,以提高+0.023 mm粒段中铼的综合回收率。  相似文献   

13.
Although Mn is one of the major impurities in the economic iron ores from the Bahariya Oasis, information on its modes of occurrence and origin is lacking in previous studies. High-Mn iron ores from El Gedida and Ghorabi–Nasser iron mines were subjected to detailed mineralogical, geochemical, and petrographic investigations using X-ray diffraction (XRD), infrared absorption spectrometry (IR), Raman spectroscopy, X-ray fluorescence (XRF), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA) to clarify the modes of occurrence of Mn in these deposits and its origin. The results showed that the MnO2 contents range between 0.03 and 13.9 wt.%. Three mineralogical types have been identified for the Mn in the high-Mn iron ores, including: (1) inclusions within the hematite and goethite and/or Mn accumulated on their active surfaces, (2) coarse-grained and crystalline pyrolusite, and (3) fine-grained cement-like Mn oxide and hydroxide minerals (bixbyite, cryptomelane, aurorite, romanechite, manjiroite, and pyrochroite) between the Fe-bearing minerals. The Mn carbonate mineral (rhodochrosite) was detected only in the Ghorabi–Nasser high-Mn iron ores. Since IR patterns of low-Mn and high-Mn samples are almost the same, a combination of XRD analysis using non-filtered Fe-Kα radiations and Raman spectroscopy could be the best way to identify and distinguish between different Mn minerals.Assuming that both Fe and Mn were derived from the same source, the occurrence of high-Mn iron ores at the base of the stratigraphic section of the deposits overlain by the low-Mn iron ores indicated a supergene origin of the studied ores by descending solutions. The predominance of Mn oxide and hydroxide minerals in botryoidal shapes supports this interpretation. The small grain size of Mn-bearing minerals as well as the features of microbial fossils such as spherical, elliptical, and filamentous shapes of the Fe-bearing minerals suggested a microbial origin of studied iron ores.Variations in the distribution and mineralogy types of Mn in the iron ores of the Bahariya Oasis demanded detailed mineralogical and petrographic characterizations of the deposits before the beneficiation of high-Mn iron ores from the Bahariya Oasis as feedstock for the ironmaking industries in Egypt by magnetizing reduction. High Mn contents, especially in the Ghorabi–Nasser iron ore and occurrence of Mn as inclusions and/or accumulated on the surface of the Fe-bearing minerals would suggest a possible utilization of the high-Mn iron ores to produce ferromanganese alloys.  相似文献   

14.
大井锡多金属矿床矿石矿物成分及时空演化   总被引:9,自引:0,他引:9  
文章总结和划分了矿床的矿石类型、矿化阶段及其在空间上的分布;对不同阶段、不同地段和不同类型的黄铁矿类、毒砂、黄铜矿、闪锌矿、方铅矿和锡石等6种主要矿石矿物进行了电子探针微区分析。结果显示,矿床中主要矿石矿物的化学成分明显受时间因素控制,尤其是黄铁矿类和锡石。毒砂、闪锌矿、黄铜矿和方铅矿等硫化物,更具空间上的分带性,总体上,老区东部-北区南部的矿物成分特征显示出其形成温度较高,可能是本区的重要矿化中心,而南区和西区可能还存在其他的矿化中心。  相似文献   

15.
磷矿伴生稀土元素是获取稀土资源的重要途径。我国磷块岩型稀土矿分布广,稀土含量高,具有综合回收价值,是仅次于独立稀土矿床的伴生稀土资源。本文主要研究云南安宁磷矿中稀土元素分布规律和赋存状态,并比较了磷矿石中稀土元素总量与磷含量的关系,结果表明磷矿石中稀土氧化物总量为72×10-6~1 050×10-6,与磷含量呈一定的正相关关系。另外通过光学显微镜及电子显微镜观察发现,安宁磷矿中缺乏独立的稀土矿物,只在部分海绿石中找到了独立的稀土矿物(可能为独居石和褐帘石)。LA-ICP-MS分析结果表明,胶磷矿单矿物稀土元素含量在770×10-6~920×10-6之间,而白云石单矿物稀土元素含量均低于34×10-6,石英单矿物的稀土元素平均含量为180×10-6。由于部分独立的稀土矿物的存在,海绿石矿物中稀土元素总量可高达2 947.27×10-6~3 159.87×10-6。综合分析结果表明,安宁磷矿中稀土元素主要以类质同像的...  相似文献   

16.
高磷铁矿石成分分析标准物质研制   总被引:3,自引:3,他引:0  
高磷铁矿石的分析测试过程需要基体组分相似、含量适中、定值组分全的标准物质进行质量监控,目前我国没有高磷铁矿石标准物质,现有铁矿石标准物质因基体组分不尽相同,磷元素含量大部分低于0.25%,而高磷铁矿石中磷含量均高于0.25%,这些标准物质难以满足高磷铁矿石产品的分析测试质量监控要求。基于此,本文研制了3个高磷铁矿石成分分析标准物质,样品分别采集于鄂西地区湖北宜昌秭归县野狼坪矿区、湖北恩施长岭矿区(武钢矿区)、湖北宜昌长阳县火烧坪矿区(宝钢长阳矿区),磷和铁含量均呈一定梯度,基本覆盖高磷铁矿的含量范围。均匀性和稳定性对SiO_2、Al_2O_3、TiO_2、P、K_2O、Na_2O、Fe、MnO、CaO、MgO、FeO、LOI、S、Cu、Pb、Zn、Cr、Ni、Co、Cd、Sr、Ba、V、As、Hg共25个组分进行检验,均匀性检验采用方差分析F检验法和测试结果的相对标准偏差进行评价,稳定性检验采用直线拟合,t检验法进行评估。经检验,样品均匀性、稳定性良好;定值采用11家实验室协作,采用2种以上不同原理的方法进行测试,定值组分包括主量元素、微量元素共25项,其中24项提供认定值及不确定度,Hg提供参考值。磷的含量分别为0.285%、不确定度0.010%,0.735%、不确定度0.020%,1.73%、不确定度0.05%,总铁含量分别为35.18%、不确定度0.20%,41.46%、不确定度0.20%,51.44%、不确定度0.13%。本次研制的高磷铁矿石标准物质可用于高磷铁矿的勘查、评价和综合利用开发中对标准物质的需求。  相似文献   

17.
东天山维权银铜矿床中钴矿化发现及成因意义   总被引:3,自引:0,他引:3  
新疆东天山地区是中国重要的钴成矿带之一,在多个与基性-超基性岩有关的铜镍硫化物矿床和磁海铁矿床中伴生有中小型钴矿资源。最近,笔者在研究东天山维权矽卡岩型银铜矿床物质组分的过程中,通过显微镜观察、电子探针扫描和成分分析发现了独立钴矿物辉砷钴矿,不仅代表了东天山含钴矿床的新类型,而且具有综合利用的前景。文章对维权矿床中铜银钴矿石类型、矿石中辉砷钴矿和其他主要金属矿物的赋存状态进行了研究,划分出铜矿石、铁铜矿石、含银铜钴矿石、银矿石、含钴铁铜矿石和铅银铜矿石6种矿石类型,认为它们可能是铁铜、钴、银3期成矿作用叠加的产物,钴成矿作用为独立的一期中高温热液成矿作用,含钴铁铜矿石是钴成矿作用叠加在铁铜成矿作用之上形成,而含银钴铜矿石是银成矿作用叠加在钴成矿作用之上形成。  相似文献   

18.
The Cihai iron skarn deposit is located in the southern part of the eastern Tianshan, Xinjiang, northwestern China. The major iron orebodies are banded and nearly parallel to each other. The iron ores are hosted in an early diabase dike and in skarn. Post-ore diabase dikes cut the iron ores and their hosting diabase. Hydrothermal activity can be divided into four stages based on geological and petrographic observations: initial K–Na alteration (stage I), skarn-minor magnetite event (II), retrograde skarn-magnetite main ore event (III), and quartz–calcite–sulfide veining (IV). Zircon U–Pb dating yields ages of 286.5 ± 1.8 Ma for early diabase and 275.8 ± 2.2 Ma for post-ore diabase dikes. Amphibole separated from massive magnetite ore gives a 40Ar–39Ar plateau age of 281.9 ± 2.2 Ma and is the time of ore formation. Formation of the Cihai iron deposit is closely related to post-collisional magmatism and associated Cu–Ni–Au polymetallic mineralization in the eastern Tianshan.  相似文献   

19.
The Águas Claras and Pico Mines are two world-class iron-ore mines hosted within the Lower- Proterozoic banded iron-formations (locally known as itabirites) of the Minas Supergroup located in the Quadrilátero Ferrífero district, Minas Gerais, Brazil. The Águas Claras orebody consists of a 2,500-m-long roughly tabular-shaped lens hosted within the dolomitic itabirite of the Cauê Formation. Dolomitic itabirite is the protore of the soft high-grade iron ore, which is the main ore type of the Águas Claras orebody, representing about 85% of the 284 Mt mined since 1973, with the remaining 15% comprising hard high-grade ore. Hematite is the main constituent of the iron ores. It occurs as martite, granular hematite and locally as specularite. Magnetite appears subordinately as relicts within martite and hematite crystals. Gangue minerals are very rare. These consist of dolomite, chlorite, talc, and apatite, and are especially common in contact with the protore. This virtual absence of gangue minerals is reflected in the chemistry of ores that are characterized by very high Fe contents (an average of 68.2% Fe).The Pico orebody is a continuous ~3,000-m-long body of a lenticular shape hosted within siliceous itabirite, which is the protore of the soft high- and low-grade ores at the Pico Mine. The soft high-grade ores, together with the low-grade ores, called iron-rich itabirite, are the main types of ore, and respectively represent approximately 51 and 29% of the reserves. The remaining 20% consists of hard high-grade ore. The iron oxide mineralogy is the same as that of the Águas Claras Mine, but in different proportions. Gangue minerals are very rare in the high-grade ores, but are slightly more common in the iron-rich itabirite. Quartz is the dominant gangue mineral, and is found with minor quantities of chlorite. The chemistry of the high-grade ores is characterized by high Fe contents (an average of 67.0%) and low P, Al2O3, and SiO2, which are concentrated in the fines. Iron-rich itabirites average 58.6% Fe and 13.5% SiO2.The genesis of the soft high-grade ores and iron-rich itabirites is related to supergene processes. Leaching of the gangue minerals by groundwater promoted the residual iron enrichment of the itabirites. This process was favored by the tropical climate and topographic situation. The original composition of the itabirites and the presence of structures controlling the circulation of the groundwater have influenced the degree of iron enrichment. The hard high-grade ores are of a hypogene origin. Their genesis is attributed to hydrothermal solutions that leached the gangue minerals and filled the spaces with hematite. This process remains a source of debate and is not yet fully understood.Editorial handling: S.G. Hagemann  相似文献   

20.
刘文勇  李伟清  程云茂 《地球学报》2013,34(S1):141-145
天生桥沉积型铝土矿属中型规模铝土矿矿床, 是目前文山地区发现的品质最好, 可利用矿体资源最大的沉积型铝土矿, 矿体位于塘子边向斜的西翼, 赋存与上二叠统龙潭组地层内, 矿石中主要矿物有一水硬铝石、软水铝石、锐钛矿、黄铁矿、赤铁矿、高岭石、云母, 矿石结构以团粒、砂屑结构为主, 通过分析矿区内干塘子、天生桥两个矿段的成矿地质特征, 指出塘子边向斜东翼者五舍矿段具有较大铝土矿找矿远景和资源潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号