首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Reverse‐time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common‐image‐point gathers, carry rich information to characterize the angle‐dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common‐image‐point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common‐image‐point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V‐shaped residual moveout with the slope of the “V” flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth‐order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.  相似文献   

2.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

3.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   

4.
方位角度域共成像点道集能够客观反映地下介质的速度、各向异性参数异常以及振幅随角度变化(AVA)和裂缝信息。传统Kirchhoff PSTM通常输出偏移距域共成像点道集,对于速度分析、各向异性分析、AVA分析、裂缝识别等均存在诸多不便。本文提出了基于走时梯度的Kirchhoff叠前时间偏移全方位角度集输出方法并提出工业上切实可行的实现方案。通过走时场梯度计算波场传播方向矢量,形成能够反映观测系统参数和波场传播情况的全方位角度域共成像点道集。为了在大规模地震数据Kirchhoff积分叠前时间偏移中输出全方位角度道集,本文给出基于输入道方式的偏移实现方法,采用逐条inline线进行线偏移成像,从而大大降低了全方位角度道集输出对计算机内存的压力,显著提高了Kirchhoff积分时间偏移输出全方位角度道集的可行性。三维盐丘模型测试和海上某区块三维实际资料试验证明了本文方法的正确性。   相似文献   

5.
Waveform inversion is a velocity‐model‐building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image‐domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the information carrier. The objective function for the image‐domain approach is designed to optimize the coherency of reflections in extended common‐image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies arising from the velocity model error. Minimizing the objective function optimizes the model and improves the image quality. The gradient of the objective function is computed using the adjoint state method in a way similar to that in the analogous data‐domain implementation. We propose an image‐domain velocity‐model building method using extended common‐image‐point space‐ and time‐lag gathers constructed sparsely at reflections in the image. The gathers are effective in reconstructing the velocity model in complex geologic environments and can be used as an economical replacement for conventional common‐image gathers in wave‐equation tomography. A test on the Marmousi model illustrates successful updating of the velocity model using common‐image‐point gathers and resulting improved image quality.  相似文献   

6.
本文针对地震勘探深度域偏移速度建模研究,利用角度域共成像点道集(ADCIGS)建立了以剩余速度为自变量,剩余深度为目标函数的关系式,及目标函数的梯度公式.利用导出的两个公式分别对剩余深度与剩余速度的关系进行了定量分析.通过理论分析和模型试算证明初始速度模型的误差具有方向敏感性,即正误差较负误差对速度建模迭代收敛更敏感.利用此结论进行深度域速度建模既可以提高计算效率也可以提高建模精度.  相似文献   

7.
时空移动成像条件及偏移速度分析   总被引:5,自引:2,他引:3       下载免费PDF全文
首先比较了深度聚焦速度分析和剩余曲率速度分析中的成像条件,然后通过时空移动成像条件得到了时移偏移距域共成像点道集和时移角度域共成像点道集.基于时移角度域共成像点道集,统一了偏移速度分析中通常应用的两个偏移速度判断准则:深度聚焦准则和成像道集拉平准则.最后基于时移角度域共成像点道集,推导了速度更新公式,并设计了速度分析流程.合成数据和实际地震资料上的测试证明了方法的可行性和有效性.  相似文献   

8.
Image gathers as a function of subsurface offset are an important tool for the inference of rock properties and velocity analysis in areas of complex geology. Traditionally, these gathers are thought of as multidimensional correlations of the source and receiver wavefields. The bottleneck in computing these gathers lies in the fact that one needs to store, compute, and correlate these wavefields for all shots in order to obtain the desired image gathers. Therefore, the image gathers are typically only computed for a limited number of subsurface points and for a limited range of subsurface offsets, which may cause problems in complex geological areas with large geologic dips. We overcome increasing computational and storage costs of extended image volumes by introducing a formulation that avoids explicit storage and removes the customary and expensive loop over shots found in conventional extended imaging. As a result, we end up with a matrix–vector formulation from which different image gathers can be formed and with which amplitude‐versus‐angle and wave‐equation migration velocity analysis can be performed without requiring prior information on the geologic dips. Aside from demonstrating the formation of two‐way extended image gathers for different purposes and at greatly reduced costs, we also present a new approach to conduct automatic wave‐equation‐based migration‐velocity analysis. Instead of focusing in particular offset directions and preselected subsets of subsurface points, our method focuses every subsurface point for all subsurface offset directions using a randomized probing technique. As a consequence, we obtain good velocity models at low cost for complex models without the need to provide information on the geologic dips.  相似文献   

9.
We present preserved‐amplitude downward continuation migration formulas in the aperture angle domain. Our approach is based on shot‐receiver wavefield continuation. Since source and receiver points are close to the image point, a local homogeneous reference velocity can be approximated after redatuming. We analyse this approach in the framework of linearized inversion of Kirchhoff and Born approximations. From our analysis, preserved‐amplitude Kirchhoff and Born inverse formulas can be derived for the 2D case. They involve slant stacks of filtered subsurface offset domain common image gathers followed by the application of the appropriate weighting factors. For the numerical implementation of these formulas, we develop an algorithm based on the true amplitude version of the one‐way paraxial approximation. Finally, we demonstrate the relevance of our approach with a set of applications on synthetic datasets and compare our results with those obtained on the Marmousi model by multi‐arrival ray‐based preserved‐amplitude migration. While results are similar, we observe that our results are less affected by artefacts.  相似文献   

10.
Wavefield‐based migration velocity analysis using the semblance principle requires computation of images in an extended space in which we can evaluate the imaging consistency as a function of overlapping experiments. Usual industry practice is to assemble those seismic images in common‐image gathers that represent reflectivity as a function of depth and extensions, e.g., reflection angles. We introduce extended common‐image point (CIP) gathers constructed only as a function of the space‐ and time‐lag extensions at sparse and irregularly distributed points in the image. Semblance analysis using CIP's constructed by this procedure is advantageous because we do not need to compute gathers at regular surface locations and we do not need to compute extensions at all depth levels. The CIP's also give us the flexibility to distribute them in the image at irregular locations aligned with the geologic structure. Furthermore, the CIP's remove the depth bias of common‐image gathers constructed as a function of the depth axis. An interpretation of the CIP's using the scattering theory shows that they are scattered wavefields associated with sources and receivers inside the subsurface. Thus, when the surface wavefields are correctly reconstructed, the extended CIP's are characterized by focused energy at the origin of the space‐ and time‐lag axes. Otherwise, the energy defocuses from the origin of the lag axes proportionally with the cumulative velocity error in the overburden. This information can be used for wavefield‐based tomographic updates of the velocity model, and if the velocity used for imaging is correct, the coordinate‐independent CIP's can be a decomposed as a function of the angles of incidence.  相似文献   

11.
Wave-equation migration velocity analysis. I. Theory   总被引:2,自引:0,他引:2  
We present a migration velocity analysis (MVA) method based on wavefield extrapolation. Similarly to conventional MVA, our method aims at iteratively improving the quality of the migrated image, as measured by the flatness of angle‐domain common‐image gathers (ADCIGs) over the aperture‐angle axis. However, instead of inverting the depth errors measured in ADCIGs using ray‐based tomography, we invert ‘image perturbations’ using a linearized wave‐equation operator. This operator relates perturbations of the migrated image to perturbations of the migration velocity. We use prestack Stolt residual migration to define the image perturbations that maximize the focusing and flatness of ADCIGs. Our linearized operator relates slowness perturbations to image perturbations, based on a truncation of the Born scattering series to the first‐order term. To avoid divergence of the inversion procedure when the velocity perturbations are too large for Born linearization of the wave equation, we do not invert directly the image perturbations obtained by residual migration, but a linearized version of the image perturbations. The linearized image perturbations are computed by a linearized prestack residual migration operator applied to the background image. We use numerical examples to illustrate how the backprojection of the linearized image perturbations, i.e. the gradient of our objective function, is well behaved, even in cases when backprojection of the original image perturbations would mislead the inversion and take it in the wrong direction. We demonstrate with simple synthetic examples that our method converges even when the initial velocity model is far from correct. In a companion paper, we illustrate the full potential of our method for estimating velocity anomalies under complex salt bodies.  相似文献   

12.
Angle-domain common-image gathers (ADCIGs) transformed from the shotdomain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion gathers, and thus, accurate. We studied the extraction of elastic-wave ADCIGs based on amplitude-preserving elastic-wave reversetime migration for calculating the incidence angle of P-and S-waves at each image point and for different source locations. The P-and S-waves share the same incident angle, namely the incident angle of the source P-waves. The angle of incidence of the source P-wavefield was the difference between the source P-wave propagation angle and the reflector dips. The propagation angle of the source P-waves was obtained from the polarization vector of the decomposed P-waves. The reflectors’ normal direction angle was obtained using the complex wavenumber of the stacked reverse-time migration (RTM) images. The ADCIGs of P-and S-waves were obtained by rearranging the common-shot migration gathers based on the incident angle. We used a horizontally layered model, the graben medium model, and part of the Marmousi-II elastic model and field data to test the proposed algorithm. The results suggested that the proposed method can efficiently extract the P-and S-wave ADCIGs of the elastic-wave reverse-time migration, the P-and S-wave incident angle, and the angle-gather amplitude fidelity, and improve the MVA and prestack inversion.  相似文献   

13.
Interval velocity analysis using post‐stack data has always been a desire, mainly for 3D data sets. In this study we present a method that uses the unique characteristics of migrated diffractions to enable interval velocity analysis from three‐dimensional zero‐offset time data. The idea is to perform a standard three‐dimensional prestack depth migration on stack cubes and generate three‐dimensional common image gathers that show great sensitivity to velocity errors. An efficient ‘top‐down’ scheme for updating the velocity is used to build the model. The effectiveness of the method is related to the incorporation of wave equation based post‐stack datuming in the model building process. The proposed method relies on the ability to identify diffractions along redatumed zero‐offset data and to analyse their flatness in the migrated local angle domain. The method can be considered as an additional tool for a complete, prestack depth migration based interval velocity analysis.  相似文献   

14.
传统炮检距域共像集(CIG)在复杂介质中因波传播的多路径而存在反射体位置不确定的问题. 角度域CIG由于克服了这一缺陷而逐步成为速度分析、AVA以及振幅保真偏移成像等研究的主要手段. 以波动理论为基础的地震偏移成像方法的发展为获得高质量的角度域CIG提供了可靠的实现途径. 其中,基于波场局域化分解和传播的小波束域波场延拓和偏移成像方法,因其波场分解基本函数和传播算子在空间和方向上的双重局域特性,而成为角度相关分析研究的有效工具. 本文在采用Gabor Daubechies框架分解的小波束叠前角度域偏移成像基础上,利用不同的叠加方法由局部角度域像矩阵得到了反射角域CIG(CRAIG)和倾角域CIG(CDAIG). 以SEG EAGE二维盐体模型为例,通过对CRAIG和CDAIG的对比,探讨了这两种角度域CIG的特点及其在地震偏移成像中的潜在应用.  相似文献   

15.
We propose a method for imaging small‐scale diffraction objects in complex environments in which Kirchhoff‐based approaches may fail. The proposed method is based on a separation between the specular reflection and diffraction components of the total wavefield in the migrated surface angle domain. Reverse‐time migration was utilized to produce the common image gathers. This approach provides stable and robust results in cases of complex velocity models. The separation is based on the fact that, in surface angle common image gathers, reflection events are focused at positions that correspond to the apparent dip angle of the reflectors, whereas diffracted events are distributed over a wide range of angles. The high‐resolution radon‐based procedure is used to efficiently separate the reflection and diffraction wavefields. In this study, we consider poststack diffraction imaging. The advantages of working in the poststack domain are its numerical efficiency and the reduced computational time. The numerical results show that the proposed method is able to image diffraction objects in complex environments. The application of the method to a real seismic dataset illustrates the capability of the approach to extract diffractions.  相似文献   

16.
Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration. In this paper we cover a residual curvature velocity analysis method on angle-domain common image gathers (ADCIGs) which can depict the relationship between incident angle and migration depth at imaging points and update the migration velocity. Differing from offset-domain common image gathers (ODCIGs), ADCIGs are not disturbed by the multi-path problem which contributes to imaging artifacts, thus influencing the velocity analysis. On the basis of horizontal layers, we derive the residual depth equation and also propose a velocity analysis workflow for velocity scanning. The tests to synthetic and field data prove the velocity analysis methods adopted in this paper are robust and valid.  相似文献   

17.
We study the azimuthally dependent hyperbolic moveout approximation for small angles (or offsets) for quasi‐compressional, quasi‐shear, and converted waves in one‐dimensional multi‐layer orthorhombic media. The vertical orthorhombic axis is the same for all layers, but the azimuthal orientation of the horizontal orthorhombic axes at each layer may be different. By starting with the known equation for normal moveout velocity with respect to the surface‐offset azimuth and applying our derived relationship between the surface‐offset azimuth and phase‐velocity azimuth, we obtain the normal moveout velocity versus the phase‐velocity azimuth. As the surface offset/azimuth moveout dependence is required for analysing azimuthally dependent moveout parameters directly from time‐domain rich azimuth gathers, our phase angle/azimuth formulas are required for analysing azimuthally dependent residual moveout along the migrated local‐angle‐domain common image gathers. The angle and azimuth parameters of the local‐angle‐domain gathers represent the opening angle between the incidence and reflection slowness vectors and the azimuth of the phase velocity ψphs at the image points in the specular direction. Our derivation of the effective velocity parameters for a multi‐layer structure is based on the fact that, for a one‐dimensional model assumption, the horizontal slowness and the azimuth of the phase velocity ψphs remain constant along the entire ray (wave) path. We introduce a special set of auxiliary parameters that allow us to establish equivalent effective model parameters in a simple summation manner. We then transform this set of parameters into three widely used effective parameters: fast and slow normal moveout velocities and azimuth of the slow one. For completeness, we show that these three effective normal moveout velocity parameters can be equivalently obtained in both surface‐offset azimuth and phase‐velocity azimuth domains.  相似文献   

18.
Extracting accurate common image angle gathers from pre-stack depth migrations is important in the generation of any incremental uplift to the amplitude versus angle attributes and seismic inversions that can lead to significant impacts in exploration and development success. The commonly used Kirchhoff migration outputs surface common offset image gathers that require a transformation to angle gathers for amplitude versus angle analysis. The accuracy of this transformation is one of the factors that determine the robustness of the amplitude versus angle measurements. Here, we investigate the possibility of implementing an extended imaging condition, focusing on the space-lag condition, for generating subsurface reflection angle gathers within a Kirchhoff migration. The objective is to determine if exploiting the spatial local shift imaging condition can provide any increase in angle gather fidelity relative to the common offset image gathers. The same restrictions with a ray-based approach will apply using the extended imaging condition as both the offset and extended imaging condition method use travel times derived from solutions to an Eikonal equation. The aims are to offer an alternative ray-based method to generate subsurface angle gathers and to understand the impact on the amplitude versus angle response. To this end, the implementation of the space-shift imaging condition is discussed and results of three different data sets are presented. A layered three-dimensional model and a complex two-dimensional model are used to assess the space shift image gathers output from such a migration scheme and to evaluate the seismic attributes relative to the traditional surface offset common image gathers. The synthetic results show that the extended imaging condition clearly provides an uplift in the measured amplitude versus angle over the surface offset migration. The noise profile post-migration is also improved for the space-lag migration due to the double summation inside the migration. Finally, we show an example of a space-lag gather from deep marine data and compare the resultant angle gathers with those generated from an offset migration and a time-shift imaging condition Kirchhoff migration. The comparison of the real data with a well log shows that the space-lag result is a better match to the well compared to the time-lag extended imaging condition and the common offset Kirchhoff migration. Overall, the results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers with an incremental improvement in amplitude versus angle fidelity and lower noise but comes at a higher computational cost.  相似文献   

19.
Extended common‐image‐point gathers (CIP) constructed by wide‐azimuth TI wave‐equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space‐ and time‐lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space‐lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray‐based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles.  相似文献   

20.
Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tomographic velocity inversion. Tests with model and field data prove the method to be correct and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号