首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A continuous record of lacustrine sedimentation capturing the entire full-glacial period was obtained from Arolik Lake in the Ahklun Mountains, southwestern Alaska. Fluctuations in magnetic susceptibility (MS), grain size, organic-matter (OM) content, C/N ratios, 13C, and biogenic silica (BSi) record marked environmental changes within the lake and its watershed during the last 33 cal ka. Age control is provided by 31 14C ages on plant macrofossils in four cores between 5.2 and 8.6 m long. Major stratigraphic units are traceable throughout the lake subbottom in acoustical profiles, and provisional ages are derived for six prominent tephra beds, which are correlated among the cores. During the interstadial interval between 33 and 30 cal ka, OM and BSi contents are relatively high with values similar to those of the Pleistocene–Holocene transition, suggesting a similar level of aquatic productivity. During the glacial interval that followed (30–15 cal ka), OM and BSi decrease in parallel with declining summer insolation. OM and BSi values remain relatively uniform compared with the higher variability before and after this interval, and they show no major shifts that might correlate with climate fluctuations evidenced by the local moraine record, nor with other global climate changes. The glacial interval includes a clay-rich unit with a depauperate diatom assemblage that records the meltwater spillover of an ice-dammed lake. The meltwater pulse, and therefore the maximum extent of ice attained by a major outlet glacier of the Ahklun Mountain ice cap, lasted from 24 to 22 cal ka. The Pleistocene–Holocene transition (15–11 cal ka) exhibits the most prominent shifts in OM and BSi, but rapid and dramatic fluctuations in OM and BSi continue throughout the Holocene, indicating pronounced paleoenvrionmental changes.  相似文献   

2.
A diatom transfer function to infer epilimnetic total phosphorus (TP) concentration was derived using surface sediment diatom data from 68 medium-sized (10–1000 ha) lakes in Southern Finland. Publicly available monitoring records were used in lake selection to avoid gradients caused by pH and humic substances. Constrained and partially constrained ordinations indicated that TP was an important variable influencing diatom assemblages. A long floristic gradient in relation to TP was also apparent and therefore an inference model was developed for TP using unimodal-based regression and calibration methods. The final model included 61 lakes with epilimnetic TP concentrations between 3 and 89 g P l–1, measured during the autumnal circulation period. It has a jackknifed-estimated root mean squared error of prediction of 0.16 log g P l–1, a maximum bias of 0.28 log g P l–1, and an r2 jack of 0.76.The model was tested in the presently eutrophic Lake Valkjärvi (epilimnetic [TP] 60–85 g P l–1), located in Southern Finland. It successfully predicted the measured autumnal epilimnetic TP concentration for the past twenty years and the changes in inferred [TP] reflected disturbances known to have occurred before that time. The diatom-based inferences show that Lake Valkjärvi was oligo-mesotrophic as late as the 1930's and has become eutrophic because of nutrient inputs from agriculture and, especially, municipalities. However, epilimnetic TP concentration has not increased further.  相似文献   

3.
This study is focused on the endorheic Uyni-Coipasa Basin located in the southern Bolivian Altiplano. Stratigraphical and fossil diatom studies based on a detailed radiocarbon chrnology revealed six phases in water-level changes and paleosalinity variations. At 15,430±80 yr B.P., lacustrine conditions settled in the southern Bolivian Altiplano. A saline lake, characterized by benthic meso-metasaline species, reached +4 m altitude above the present bottom of the basin. After 15,430±80 yr B.P., the level rapidly rose to +27 m, as suggested by a tychoplanktonic mesosaline flora. Between 14,500 years and 13,000 years, finely lanminated sediments at +32 m contained successively a dominance of epiphytic mesosaline to hypersaline species and tychoplanktonic oligosaline diatoms, indicating weak fluctuations in water-level and salinity. At 13,000 years, strong changes in the diatom flora occurred; epiphytic oligo-hypersaline diatoms were replaced by planktonic meso-polysaline species. They indicate a deep salt lake (the lake reached +100 m). After 12,000 years, the lake level abruptly dropped, as suggested by fluviatile sediments with a benthic mesopolysaline diatom flora. The main lake was replaced by shallow saline ponds. A wet pulse occurred at 11,400 years, characterized by low water level (+7 m) and high salinity. This lacustrine phase remained until 10,400 yr B.P. These data indicate changes in Precipitation minus Evaporation (P-E). Our regional interpretations are based on a comparison with teh available data on the northern (Lake Titicaca) and southern (Lipez are) Bolivian Altiplano and on the northern Chilean Altiplano (Atacama Desert).  相似文献   

4.
The relationship between surface sediment diatom assemblages and measured limnological variables in fifty eight lake samples from the south Bolivian Altiplano was examined by constructing a diatom-water chemistry dataset. Analysis of this dataset by canonical correspondence analysis revealed that salinity and ionic concentration accounted for a significant amount of the variation in the distribution of the diatom assemblages. Two methods weighted-averaging regression and calibration, and by-class mean percentage table were used to established a transfer function for future reconstruction of past lake water salinity and ionic concentration in the southern Bolivian Altiplano. Weighted-averaging regression and calibration with inverse deshrinking provided a better model for the water chemistry reconstructions in this region.  相似文献   

5.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   

6.
Subfossil zooplankton assemblages (Cladocera 22 taxa, Rotifera 1 taxon) were identified from the surface sediments of 36 shallow (median depth = 0.7 m) Danish coastal brackish lakes differing in epilimnic salinity (SAL, range 0.2–17.4), summer-mean total phosphorus (TP, 27–327 g l–1) and total nitrogen (TN, 0.850–2.629 mg l–1), as well as in submerged macrophyte coverage and planktivorous fish density (PL-CPUE). Cladoceran species richness declined significantly with increasing SAL, TP and TN, while no significant correlation was found to either PL-CPUE, macrophyte coverage or lake surface area. Bonferroni-adjusted forward selection within canonical correspondence analysis (CCA) showed that 22.1% of the variation in zooplankton data was explained by PL-CPUE, SAL and TP uniquely; each variable explaining an almost equally significant amount of variation in the zooplankton data. Predictive models to infer PL-CPUE, SAL and TP were developed using variance weighted-averaging (WA) procedures. Almost similar values of boot-strapped coefficient of determination (r2boot-strapped 0.22–0.38) were produced by the WA inference models of PL-CPUE, SAL and TP, while the inference models of TP produced the lowest boot-strapped root-mean-squared-error of prediction (RMSEPboot-strapped 0.29–0.36 log(TP + 1), g l–1). Yet, zooplankton TP and SAL optima (WA) were strongly correlated (r2 = 0.46), while PL-CPUE optima (WA) were independent of both TP and SAL optima, indicating that only the PL-CPUE inference models are suitable for making reconstructions.  相似文献   

7.
Chrysophyte cysts preserved in recent and pre-industrial lake sediment samples from 54 Muskoka-Haliburton (Ontario) lakes were used in a paleolimnological study to determine the impact of acidic precipitation and cottage development on water quality. A total of 246 cyst morphotypes were identified. Ecological preferences of cyst morphotypes were determined using multivariate statistical analysis, cluster analysis, and species-environment correlations. Recent cyst assemblages were related to water chemistry and lake morphometric variables using Redundancy Analysis (RDA). The distribution of morphotypes was related to a gradient of acid neutralising capacity (ANC), expressed through the association of variables related to buffering (i.e. longitude, watershed area, and ionic concentration) with the first axis (1 = 0.29). Cyst assemblages were also defined, to a lesser extent (2 = 0.06), by a trophic status gradient, created through the combination of total nitrogen (TN), total phosphorus (TP), volume-weighted cottage density, and lake depth variables. The identification of lakewater pH and trophic status as important determinants of cyst assemblage structure allowed for the reconstruction of acidification and eutrophication related water chemistry changes using fossil cyst assemblages. The reconstruction of pre-industrial (pre-1850) water quality conditions with fossil cyst assemblages indicated that pH significantly decreased in 24.1% of the study lakes and increased in 16.7% of the lakes. Increases in pH in more alkaline drainage basins are attributed to alkalinity generation processes induced by acidic precipitation as has been shown in other studies. Total phosphorus (TP) concentrations significantly declined in 12.9% of the lakes and increased in 16.6% of lakes. Increases in [TP] were linked to cottage development. Decreases in trophic status may be due to landuse changes, the result of the acidification occurring in the area, or warmer and drier climates. A comparison of chrysophyte cyst and diatom water quality inferences show similar trends in pH changes. There is a good agreement between diatom and chrysophyte bioindicators with respect to [TP] changes in oligotrophic lakes (< 10 g/L); however, diatom inferences suggest that lakes with current [TP] values greater than 10 g/L have decreased in trophic status over time, while chrysophyte reconstructions suggest that these same lakes have become more productive systems.  相似文献   

8.
Diatoms were analysed from a 30-cm long sediment core obtained from remote subarctic Lake Saanaärvi (69°03N, 20°52E) in order to trace possible changes in the lake. Diatom assemblages were relatively constant throughout the core, except in the top 4–5 cm (approx 1850 A.D.) where relative frequencies of Aulacoseira italica subsp. subarctica, A. lirata var. biseriata, Cyclotella comensis and C. glomerata increased markedly. No significant trends were observed in the weighted averaging (WA) reconstructed pH values. Several hypotheses, including (i) airborne pollution, (ii) climatic change, and (iii) catchment disturbances have been put forth to explain the recent changes in diatom assemblages. The diatom change coincides with a marked increase in mean annual temperature that has been documented in the area since the termination of the Little Ice Age. Our evidence favours climate change as the main causative mechanism for the observed diatom compositional changes, although other explanations cannot be ruled out.  相似文献   

9.
The surface sediment diatom and chrysophyte assemblages from 33 Sudbury lakes were added to our published 72 lake data set to expand and refine the diatom and chrysophyte-based inference models that we had earlier developed for this region. Our calibration data set now includes 105 lakes, representing gradients for multiple environmental variables (e.g., lakewater pH, metals, and transparency). The revised models are based on the weighted averaging calibration and regression approach and include bootstrap error estimates. The pH model was the strongest (r2 boot = 0.75, RMSE boot = 0.50). The chrysophyte-inferred pH model (r2 boot = 0.79, RMSE boot = 0.48) that we developed was as robust as the diatom pH model. Diatom and chrysophyte inferred pH models were then applied to top (surface sediments representing current conditions) and bottom (generally from > 30 cm deep representing pre-industrial conditions) sediment diatom and chrysophyte assemblages of 19 Killarney area lakes near Sudbury. The top and bottom inferred pH results were compared to early-1970s measured pH data. These data suggest that, although many of the poorly buffered Killarney lakes had experienced acidification, marked pH recovery has occurred in many lakes within the last 25 years. Despite the stunning pH recovery, the present-day diatom and chrysophyte assemblages are significantly different from assemblages present during pre-industrial times. Our results suggest that biological recovery may require more time than chemical recovery. It is also likely that these lakes may never recover biologically because other anthropogenic stressors (e.g., climate warming and increased exposure to UV-B radiation) may now have greater influence on biological communities in Killarney/Sudbury area lakes than acidification.  相似文献   

10.
Lake Chen Co, situated at 90°33–39E, 28°53–59N with a lake level of 4420 m asl, is an enclosed lake with 148 km2 of catchment area and 40 km2 of lake surface. It is mainly supplied by glacier melt water either from surface inflow or groundwater. Atmospheric precipitation is mainly concentrated in June–September. A 216-cm long lake sediment core was obtained at a site with 8 m of water depth, 800 m from the lakeshore and 1.5% of the bottom slope in this lake. The sediment core was taken by a piston sampler and was sliced with an interval of 1 cm each. 210Pb dating measurement suggested that the average sedimentary rate was 0.16 cm yr–1, which also was confirmed by 137Cs peak occurrence. Magnetic analyses included low-frequency dependent susceptibility (LF), susceptibility of anhysteretic remanent magnetism (ARM), the saturation isothermal remanent magnetism (SIRM), the isothermal remanent magnetism (IRM) reverse and Soft and Hard contents were performed for the sediment core. Results showed that LF was an index for reflecting the environmental conditions, but was not sufficient to reveal details of magnetic features. This had been proved by measurements of IRM Reverse percentage and Soft and Hard magnetic minerals values. The log(SIRM/LF) had much more information to reveal environmental changes. The ARM/LF might be more sensitive to the local environmental conditions because it was well able to indicate the grain-size variations of magnetic particles. In the past ca. 1400 years, the warm stages were ca. 620–740 AD, 1120–1370 AD and since ca. 1900 AD. After an intensively cold stage during ca. 1550–1690 AD, a cold-humid stage from ca. 1690–1900 AD and a warm-dry stage since ca. 1900 AD followed. Among these stages, the warmest one occurred in ca. 1120–1370 AD and the coldest stage was between ca. 1550 and 1690 AD. This result might be compared with many other research results from lake cores, ice cores and the Chinese historical documents.  相似文献   

11.
Eighteen lakes were added to a published training set of 46 British Columbia (BC) lakes in order to expand the original range of total phosphorus (TP) concentrations. Canonical correspondence analysis (CCA) was used to analyze the relationship between diatom assemblages and environmental variables. Specific conductivity and [TP] each explained significant (P0.05) directions of variance in the distribution of the diatoms. The relationship between diatom assemblages and [TP] was sufficiently strong to warrant the development of a weighted-averaging (WA) regression and calibration model that can be used to infer past trophic status from fossil diatom assemblages.The relationship between observed and inferred [TP] was not improved by the addition of more eutrophic lakes, however the [TP] range and the number of taxa used in the transfer function are now superior to the original model. Diatom species assemblages changed very little in lakes with TP concentrations greater than 85 µg 1–1, so we document the development of a model containing lakes with TP85 µg 1–1. The updated model uses 59 training lakes and covers a range of species optima from 6 to 41.9 µg 1–1 TP, and a total of 150 diatom taxa.The updated inference model provided a more realistic reconstruction of the anthropogenic history of a highly eutrophic BC lake. The model can now be used to infer past nutrient conditions in other BC lakes in order to assess changes in trophic status.  相似文献   

12.
The study was undertaken as part of a wider palaeoecological investigation of Late glacial and Holocene lake sediments from a site on the exposed Atlantic coast of the Shetland Islands. The diatom data presented here define a sequence of assemblages, commencing at c. 15.8 cal ka BP, which reflects lithological variation in the section, in particular the Late glacial alternation of minerogenic and more organic horizons. Cliff retreat caused drainage of the lake sometime after c. 4.0 cal ka BP. Almost all taxa recorded are small benthic and tychoplanktonic diatoms: Fragilaria (sensu lato), Achnanthes (s.l.) and some Navicula spp. predominate in the Late glacial. Different benthos become dominant in the Holocene, but no plankton developed. Stauroforma was the commonest genus present, and results indicate a relationship between the occurrence of two types, Stauroforma A and Stauroforma B, and the severity of prevailing environmental conditions. The lithology and associated assemblages suggest a sequence including the classic north European Bølling and Allerød' warmer periods, followed by the Loch Lomond Stadial. Subsequently, the temporal diatom succession resembles the pattern described in modern linear transects across the circumpolar treeline in north America and Asia, both in type of assemblage and some dominant species.  相似文献   

13.
This multi-disciplinary investigation documents the longterm effects of atmospheric pollution of metals and acids on a geologically sensitive catchment in the umava Mountains, southwestern Czech Republic, a region with a long history of human disturbance. A 30 cm long sediment core (I) from ertovo Lake was analyzed for natural and artifical radionuclides, metals, diatoms, chrysophytes, and pollen in sediments accumulated during the last 200 years. A second core (II), extending to 95 cm, included sediment judged to be free of atmospheric deposition of pollutants associated with the Industrial Revolution. Chronostratigraphic markers include several changes in the pollen assemblages corresponding to well-documented changes in land-use, and distinct distributions of 137Cs, 134Cs and 241Am from weapons testing and the 1986 nuclear accident at Chernobyl, Russia. These markers corroborate the 210Pb dating and, together, produce a reliable chronology extending back nearly to 1800 A.D.Stratigraphic profiles of Cu, Pb, and Zn in Core I are unlike any previously reported in the literature. Concentrations of Cu, Pb, and Zn remain generally above 100, 400, and 200 g g-1, respectively, for the 200 years represented by Core I. These values are unusually high for sediments from a watershed with no known heavy-metal ore bodies. Accumulation rates for Cu, Pb, and Zn, which include both atmospheric and watershed contributions, are also high (ca 1, > 1 and > 1 g cm-2 yr-1, respectively) for the same period, although the anthropogenic contribution of Zn rose from nearly zero at 1800 A.D. The Cu and Pb accumulation rates rose dramatically about 1640 A.D.Accumulation rates of anthropogenically-derived Be, a relatively abundant element in the soft coals of the region, are also elevated by about 0.01 g cm-2 yr-1 in sediments of this period. Vanadium accumulation rates increased only since 1980 A.D., presumably along with increased consumption of oil.Diatom assemblages illustrate that the lake was acidic (pH between 4.5 and 5) through at least the past 200 years. The pH declined significantly (from ca 5 to 4) between 1960 and 1985 with a slight increase to 4.5 in the last few years. Recent diatom and chrysophyte assemblages suggest high trace metal concentrations, consistent with the present lake-water chemistry.  相似文献   

14.
Yuanyang Lake (24°35N, 121°24E), located at an altitude of 1,670 m within a nature preserve in northern Taiwan, is an acidic lake. Remains of diatoms and pollen from a 3.72-m sediment core were used to elucidate the relationships between the vegetation of the watershed and the paleolimnological environment. Past pH, saprobity level, and total P of the lake were inferred from the diatom assemblages and were analyzed with respect to changes in the terrestrial vegetation. The inferred pH values fluctuated only slightly, whereas the inferred saprobity level increased markedly towards the sediment surface. In the topmost sediment, a slight drop in the inferred pH was associated with a lowering in the saprobity index. This was interpreted as a possible result of recent anthropogenic acidification and changes in productivity related to changes in acidity. Based on pollen analyses, we conclude that Chamaecyparis persisted over at least the last four thousand years in the watershed. The vegetation in the watershed changed little during this period of time, which is consistent with the constancy of inferred pH values. A positive correlation between the inferred pH and 13C values of the sediments was found.  相似文献   

15.
Reconnaissance 18O,, D, and 87Sr data for fifteen lakes in the Western Lakes Region of the Sand Hills of Nebraska indicate dynamic hydrologic systems. The rather narrow range of 87Sr from lake water (1.1 to 2.1) and groundwater (0.9 to 1.7) indicates that the groundwater is generally unradiogenic. Groundwater residence times and relatively unradiogenic volcanic ash within the dune sediments control the 87Sr values. Based on the mutual variations of 18O and D, the lakes can be divided into three groups. In Group 1, both 18O and D values increase from spring to fall. The 18O and D values in Group 2 decreased from spring to fall. Group 3 are ephemeral lakes that went dry some time during 1992. The data and isotopic modeling show that variations in the ratio of evaporation relative to groundwater inflow, local humidity conditions, and the a has substantial influence on the isotopic composition. In addition, isotopic behavior in ephemeral lakes can be rather unusual because of the changing activities of water and mineral precipitation and redissolution. The annual and interannual isotopic variability of these lakes which is reflected in the paleonvironmental indicators may be the rule rather than the exception in these types of systems.  相似文献   

16.
We used multiple variables in a sediment core from Lake Peten-Itza, Peten, Guatemala, to infer Holocene climate change and human influence on the regional environment. Multiple proxies including pollen, stable isotope geochemistry, elemental composition, and magnetic susceptibility in samples from the same core allow differentiation of natural versus anthropogenic environmental changes. Core chronology is based on AMS 14C measurement of terrestrial wood and charcoal and thus avoids the vagaries of hard-water-lake error. During the earliest Holocene, prior to 9000 14C yr BP, the coring site was not covered by water and all proxies suggest that climatic conditions were relatively dry. Water covered the coring site by 9000 14C yr BP, coinciding with filling of other lakes in Peten and farther north on the Yucatan Peninsula. During the early Holocene (9000 to 6800 14C yr BP), pollen data suggest moist conditions, but high 18O values are indicative of relatively high E/P. This apparent discrepancy may be due to a greater fractional loss of the lake's water budget to evaporation during the early stages of lake filling. Nonetheless, conditions were moist enough to support semi-deciduous lowland forest. Decrease in 18O values and associated change in ostracod species at 6800 14C yr BP suggest a transition to even moister conditions. Decline in lowland forest taxa beginning 5780 14C yr BP may indicate early human disturbance. By 2800 14C yr BP, Maya impact on the environment is documented by accelerated forest clearance and associated soil erosion. Multiple proxies indicate forest recovery and soil stabilization beginning 1100 to 1000 14C yr BP, following the collapse of Classic Maya civilization.  相似文献   

17.
Systematic variability occurs between the oxygen isotopic composition of lake water sampled in mid-summer 1993 and cellulose extracted from surficial sediments of a suite of lakes spanning the forest-tundra transition near Noril'sk, Russia. Some tundra and all forest-tundra lakes show greater deviation from expected cellulose-water isotopic separation than forest lakes, apparently because of greater sensitivity to 18O-depleted snowmelt contributions. Cellulose derived from aquatic plants naturally integrates fluctuations in lake water 18O, providing a signal that is inherently more representative of average thaw season lake water 18O than the measure of instantaneous 18O obtained from an individual sample of lake water. Thus, indiscriminate use of empirical cellulose-water relations derived from calibration samples could lead to erroneous assessment of paleohydrology from the oxygen-isotope stratigraphy of sediment cores from arctic lakes. However, deviation from the expected cellulose-water fractionation is a source of lake-specific hydrologic information useful for qualifying paleoenvironmental interpretations and possibly constraining non-isotopic methods that rely on surface-sediment calibrations.  相似文献   

18.
With the purpose of studying the vegetation and climatic changes in the last millenia of the Coastal Plain of Rio Grande do Sul, Brazil, a palynological study was made of the sediments of the northern part of Lagoa dos Patos lagoon. Twenty-four samples from a 2.26 m core taken at a depth of 7.70 m (30° 50 50 S and 50° 59 05 W) were collected.The analyses revealed marine transgression at 5170±120 years B.P., giving rise to local vegetation consisting chiefly of xerophytes and halophytes. Vegetation characteristic of a humid environment was present along adjacent portions of the Coastal Plain at this time. Transgression increased at about 4080±110 years B.P., when the greatest level of tidewater was reached. This coincided with the beginning of forest vegetation development along the inner portions of the Coastal Plain. These data suggest that marine transgression may have been a consequence of higher temperatures and more humidity. After 4000 years B.P., regression occurred, resulting in fresh waters characteristics in the northern portion of the lagoon. The development of forest vegetation began at this time.This is the fourth in a series of papers published in this issue on Paleolimnology in Southern South America. Dr. C. A. Fernández served as guest editor for these papers.  相似文献   

19.
Three piston cores from Lake Victoria (East Africa) have been analysed for organic carbon (TOC) and nitrogen (TN) content, stable isotopes (13C and 15N), and Hydrogen Index (HI). These data are combined with published biogenic silica and water content analyses to produce a detailed palaeolimnological history of the lake over the past ca. 17.5 ka. Late Pleistocene desiccation produced a lake-wide discontinuity marked by a vertisol. Sediments below the discontinuity are characterised by relatively low TOC and HI values, and high C/N, 13C and 15N, reflecting the combined influence of abundant terrestrial plant material and generally unfavourable conditions for organic matter preservation. A thin muddy interval with lower 13C and higher HI and water content indicates that dry conditions were interrupted by a humid period of a few hundred years duration when the lake was at least 35 m deep. The climate changed to significantly more humid conditions around 15.2 ka when the dry lake floor was rapidly flooded. Abundant macrophytic plant debris and high TOC and 13C values at the upper vertisol surface probably reflect a marginal swamp. 13C values decrease abruptly and HI begins to increase around 15 ka BP, marking a shift to deeper-water conditions and algal-dominated lake production. C/N values are relatively low during this period, suggesting a generally adequate supply of nitrogen, but increasing 15N values reflect intense utilisation of the lake's DIN reservoir, probably due to a dramatic rise in productivity as nutrients were released to the lake from the flooded land surface.An abrupt drop in 13C and 15N values around 13.8-13.6 ka reflects a period of deep mixing. Productivity increased due to more efficient nutrient recycling, and 13C values fell as 12C-rich CO2 released by bacterial decomposition of the organic material was brought into the epilimnion. A weak drop in HI values suggests greater oxygen supply to the hypolimnion at this time. Better mixing was probably due to increased wind intensity and may mark the onset of the Younger Dryas in the region.After the period of deep mixing, the water column became more stable. TOC, C/N, 13C and HI values were at a maximum during the period between 10 and 4 ka, when the lake probably had a stratified water column with anoxic bottom waters. A gradual decrease in values over the last 4000 yrs suggest a change to a more seasonal climate, with periodic mixing of the water column. Rising sediment accumulation rates and a trend to more uniform surface water conditions over the last 2000 yrs are probably a result of increased anthropogenic impact on the lake and its catchment.Following a maximum at the time of the rapid lake-level rise during the terminal Pleistocene, 15N has remained relatively low and displays a gradual but consistent trend to lower values from the end of the Pleistocene to the present. TN values have risen during the same period. The lack of correlation between 13C and 15N, and the absence of any evidence for isotopic reservoir effects despite the rise in TN, suggests that the atmosphere, rather than the lake's dissolved nitrogen pool has been the principal source of nitrogen throughout the Holocene. The importance of atmospheric N fixation to Lake Victoria's nitrogen cycle thus predates by a very considerable margin any possible anthropogenic eutrophication of the lake.  相似文献   

20.
Lake Bonneville marl provides a stratigraphic record of lake history preserved in its carbonate minerals and stable isotopes. We have analyzed the marl in shallow cores taken at three localities in the Bonneville basin. Chronology for the cores is provided by dated volcanic ashes, ostracode biostratigraphy, and a distinctive lithologic unit believed to have been deposited during and immediately after the Bonneville Flood.A core taken at Monument Point at the north shore of Great Salt Lake encompasses virtually the entire Bonneville lake cycle, including the 26.5 ka Thiokol basaltic ash at the base and deposits representing the overflowing stage at the Provo shoreline at the top of the core. Two cores from the Old River Bed area near the threshold between the Sevier basin and the Great Salt Lake basin (the main body of Lake Bonneville) represent deposition from the end of the Stansbury oscillation ( 20 ka) to post-Provo time ( 13 ka), and one core from near Sunstone Knoll in the Sevier basin provides a nearly complete record of the period when Lake Bonneville flooded the Sevier basin (20–13 ka).In all cores, percent calcium carbonate, the aragonite to calcite ratio, and percent sand were measured at approximately 2-cm intervals, and 18O and 13C were determined in one core from the Old River Bed area. The transgressive period from about 20 ka to 15 ka is represented in all cores, but the general trends and the details of the records are different, probably as a result of water chemistry and water balance differences between the main body and the Sevier basin because they were fed by different rivers and had different hypsometries. The Old River Bed marl sections are intermediate in position and composition between the Monument Point and Sunstone Knoll sections. Variations in marl composition at the Old River Bed, which are correlated with lake-level changes, were probably caused by changes in the relative proportions of water from the two basins, which were caused by shifts in water balance in the lake.This is the second paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号