首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined archaeological data, shore surveys, and aerial photos of submerged sediments in the Sea of Galilee provide new insights into environmental and tectonic events, their dating, and their impact on the Ohalo II prehistoric camp (ca. 19,500 yr B.P.) and its surroundings. The Ohalo II waterlogged campsite contains excellently preserved brush hut remains and other in situ features, all embedded in late Pleistocene lacustrine strata. The findings indicate relatively short occupation of the site, not more than months or several years at a time. The high quality in situ preservation of delicate organic materials, as well as the short occupation period, suggests a quick and gentle burial by fine sediments. The evident fast submergence (water level rise of the Sea of Galilee) could have been the result of climatic fluctuations towards the end of the last glaciation and/or small‐scale tectonic subsidence. The site is located on a tectonic block formed in the western fault belt of the Dead Sea Rift. We present new evidence of post‐occupational folding of the late Pleistocene strata and recent tilting and faulting. A westward tectonic tilt may have caused the blockage of the old Jordan River outlet after A. D. 1106. Excellent preservation of the fault traces to the east of the site is attributed to the young age of the displacement on the fault. The last displacement apparently post‐dates the blockage of the old Jordan River. © 2002 Wiley Periodicals, Inc.  相似文献   

2.
The freshwater Lake Kinneret (Sea of Galilee) and the hypersaline Dead Sea are remnant lakes, evolved from ancient water bodies that filled the tectonic depressions along the Dead Sea Transform (DST) during the Neogene-Quartenary periods. We reconstructed the limnological history (level and composition) of Lake Kinneret during the past ∼40,000 years and compared it with the history of the contemporaneous Lake Lisan from the aspect of the regional and global climate history. The lake level reconstruction was achieved through a chronological and sedimentological investigation of exposed sedimentary sections in the Kinnarot basin trenches and cores drilled at the Ohalo II archeological site. Shoreline chronology was established by radiocarbon dating of organic remains and of Melanopsis shells.The major changes in Lake Kinneret level were synchronous with those of the southern Lake Lisan. Both lakes dropped significantly ∼42,000, ∼30,000, 23,800, and 13,000 yr ago and rose ∼39,000, 26,000, 5000, and 1600 yr ago. Between 26,000 and 24,000 yr ago, the lakes merged into a unified water body and lake level achieved its maximum stand of ∼170 m below mean sea level (m bsl). Nevertheless, the fresh and saline water properties of Lake Kinneret and Lake Lisan, respectively, have been preserved throughout the 40,000 years studied. Calcium carbonate was always deposited as calcite in Lake Kinneret and as aragonite in Lake Lisan-Dead Sea, indicating that the Dead Sea brine (which supports aragonite production) never reached or affected Lake Kinneret, even during the period of lake high stand and convergence. The synchronous level fluctuation of lakes Kinneret, Lisan, and the Holocene Dead Sea is consistent with the dominance of the Atlantic-Mediterranean rain system on the catchment of the basin and the regional hydrology. The major drops in Lake Kinneret-Lisan levels coincide with the timing of cold spells in the North Atlantic that caused a shut down of rains in the East Mediterranean and the lakes drainage area.  相似文献   

3.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.  相似文献   

4.
The Fehmarn Belt is a key area for the Late Pleistocene and Holocene development of the Baltic Sea as it was a passage for marine and fresh water during its different stages. The pre‐Holocene geological development of this area is presented based on the analysis of seismic profiles and sedimentary gravity cores. Late Pleistocene varve sediments of the initial Baltic Ice Lake were identified. An exceptionally thick varve layer, overlain by a section of thinner varves with convolute bedding in turn covered by undisturbed varves with decreasing thicknesses is found in the Fehmarn Belt. This succession, along with a change in varve geochemistry, represents a rapid ice‐sheet withdrawal and increasingly distal sedimentation in front of the ice margin. Two erosional unconformities are observed in the eastern Mecklenburg Bight, one marking the top of the initial Baltic Ice Lake deposits and the second one indicating the end of the final Baltic Ice Lake. These unconformities join in Fehmarn Belt, where deposits of the final Baltic Ice Lake are missing due to an erosional hiatus related to a lake‐level drop during its final drainage. After this lake‐level drop, a lowstand environment represented by river deposits developed. These deposits are covered by lake marls of Yoldia age. Tilting of the early glacial lake sediments indicates a period of vertical movements prior to the onset of the Holocene. Deposits of the earliest stages of the Baltic Sea have been exposed by ongoing erosion in the Fehmarn Belt at the transition to the Mecklenburg Bight.  相似文献   

5.
The shrinkage of the Lisan Lake (LL) to form the recent Dead Sea (DS) was mainly a result of the reduction of the catchment area from around 157,000 km2 during Late Pleistocene to 43,000 km2 presently. The reduction in the catchment area resulted from the eruption and spread of the basalt flows of Jabal Arab-Druz (JAD), which together with the resulting deposition of thick rock debris and gravels occupied the drainage system. The filling of the pre-basalt drainage system, which used to feed the Dead Sea, with basalts and alluvial sediments blocked the inflows from reaching the Dead Sea. Local base levels along the basalt flow boarders such as Azraq Oasis, Sirhan Basin and Damascus Oasis, and numerous pools and mud flats were created.  相似文献   

6.
《Quaternary Science Reviews》2007,26(17-18):2219-2228
Lakes Samra, Lisan and the Dead Sea occupied the Dead Sea basin during the Last Interglacial (∼140–75 ka BP), last glacial (∼70–14 ka BP) and Holocene periods, respectively. The age of Lake Lisan and Samra was determined by U–Th dating of primary aragonites comprising parts of the lacustrine sedimentary sequences. The lakes have periodically deposited sequences of layered calcitic marls (Lake Samra) or laminated primary aragonite (Lake Lisan). The deposition of aragonite as the primary carbonate phase reflects the contribution of the incoming freshwater (loaded with bi-carbonate) and high Mg-, Ca-chloride brine that originated from the subsurface vicinity of the Dead Sea basin. Deposition of calcitic marls suggests a minor effect of the brines. The Ca-chloride subsurface brine has been migrating in and out of the wall rocks of the Dead Sea basin, reflecting the regional hydrological conditions. During most of the last glacial period and during the late Holocene, sufficient precipitation above the Judea Mountains pushed the subsurface Ca-chloride brines into the lakes causing the deposition of aragonite. During the Last Interglacial period the rain that precipitated above the Judea Mountains was insufficient to induce brine flow toward Lake Samra. It appears that sporadic floods provided calcium, bicarbonate and detritus to produce the Samra calcitic marls. Travertines deposited at the Samra–Lisan boundary indicate the early stage in the resumption of groundwater (springs) activity that led to the resurgence of Ca-chloride brine and rise of Lake Lisan. Similar variations in the regional rain precipitation and hydrological activity probably characterized the long-term geochemical evolution of Pleistocene lacustrine water-bodies in the Dead Sea basin, enabling the use of the carbonates as paleo-hydrological monitors.  相似文献   

7.
Winterfeld, M., Schirrmeister, L., Grigoriev, M. N., Kunitsky, V. V., Andreev, A., Murray, A. & Overduin, P. P. 2011: Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia. Boreas, 10.1111/j.1502‐3885.2011.00203.x. ISSN 0300‐9483. The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non‐glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C‐AMS, OSL on quartz, IR‐OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice‐wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.  相似文献   

8.
苏州澄湖SC1孔晚更新世晚期以来的古环境演变研究   总被引:1,自引:1,他引:0  
史凯 《现代地质》2010,24(2):214-220
通过对苏州澄湖SC1孔沉积物的粒度、磁化率、孢粉和有孔虫等的实验分析,并结合沉积物的岩性构造特征以及AMS 14C测年数据,探讨了晚更新世晚期以来苏州澄湖地区的气候波动特征以及海侵、海退沉积巡回序列。研究发现该区域气候与世界气候波动性一致,具有温暖湿润-冷而略干-温暖湿润-暖热潮湿-温凉略干-温暖湿润的波动变化特征;晚更新世晚期以来具有两个海相沉积地层,一为晚更新世晚期海侵(约为34 kaBP),另一为全新世中期海侵((6 955±50)aBP);整个剖面缺失硬粘土层,与之对应的则是两海相地层之间的泥砂互层;沉积环境经历了晚更新世晚期海侵期河床、河漫滩相-末次冰期干冷期河流湖沼相-全新世早期河口湾亚相-全新世中期滨浅海相-全新世晚期淡水湖沼相的演变过程。  相似文献   

9.
A varied assemblage of algal stromatolites was encountered in caves along the northern section of the Dead Sea Fault Escarpment. The caves are situated at the lower part of the escarpment at altitudes ?310 to ?188 m relative to mean sea level (m.s.l.), i.e. ca 110–230 m above the present Dead Sea level. The cave stromatolites are mainly composed of aragonite yielding U–Th ages of ~75–17 ka. The altitude, mineralogy and ages, as well as comparison with previously documented stromatolite outcrops in the area, ascribe the cave stromatolites to the aragonite-precipitating hypersaline Lake Lisan—the Late Pleistocene predecessor of the Dead Sea.The stromatolites are used as a lake level gauge, based on the algae being reliant upon the light of the upper water layer. Preservation of the original structure and aragonite mineralogy of the stromatolites, suggests a closed system regarding the radioactive elements, enabling reliable U–Th dating. A curve of Lake Lisan levels is constructed based on the stromatolite ages and cave elevations. The following points are noted: (1) Lake levels of ?247 m relative to m.s.l., are recorded at ~75–72.5 ka; (2) relatively high lake levels above ?220 m relative to m.s.l., are achieved at ~41.5 ka, and are still recorded at ~17 ka; (3) the peak level is ?188 m relative to m.s.l., at ~35.5–29.5 ka. These results indicate lake stands up to 80 m higher than previously accepted, for large parts of the Lake Lisan time span. This difference is explained by tectonic subsidence of up to 2.2 m/ka within the Dead Sea depression since the latest Pleistocene. This subsidence rate is in the same order of magnitude with previously calculated subsidence rates for the Dead Sea depression [Begin, Z.B., Zilberman, E., 1997. Main Stages and Rate of the Relief Development in Israel. Geological Survey of Israel report, Jerusalem]. Unlike previous Lake Lisan level estimations, the new curve is measured at the relatively stable shoulders of the Dead Sea depression.  相似文献   

10.
The Big Eddy site (23CE426) in the Sac River valley of southwest Missouri is a rare recorded example of distinctly stratified Early through Late Paleoindian cultural deposits. Early point types recovered from the site include Gainey, Sedgwick, Dalton (fluted and unfluted), San Patrice, Wilson, and Packard. The Paleoindian record at Big Eddy represents only a fraction of the site's prehistoric cultural record; stratified cultural deposits in alluvium above the Paleoindian components span the entire known prehistoric sequence, and terminal Pleistocene alluvium may contain pre‐Early Paleoindian cultural deposits. This study focused on the paleogeomorphic setting, stratigraphy, depositional environments, pedology, geochronology, and history of landscape evolution of the late Pleistocene and early Holocene alluvium at the site. The Paleoindian sequence is associated with a complex buried soil 2.85 m below the modern surface (T1a) of the first terrace of the Sac River valley in the site vicinity. This soil formed at the top of the early submember of the Rodgers Shelter Member (underlying the T1c paleogeomorphic surface) and contains at least 70 cm of stratified Paleoindian cultural deposits, all in floodplain and upper point‐bar facies. A suite of 36 radiocarbon ages indicates that the alluvium hosting the Paleoindian sequence aggraded between ca. 13,250 and 11,870 cal yr B.P. (11,380 and 10,180 14C yr B.P.). Underlying deposits accumulated between ca. 15,300 and 13,250 cal yr B.P. (12,950 and 11,380 14C yr B.P.). By ca. 11,250 cal yr B.P. (9,840 14C yr B.P.) the T1c paleogeomorphic surface was buried by the earliest increment of a thick sequence of overbank sheetflood facies, ultimately resulting in deep burial and preservation of the Paleoindian record. The landform‐sediment assemblage that hosts the Paleoindian and possibly earlier cultural deposits at Big Eddy is both widespread and well preserved in the lower Sac River valley. Moreover, the terminal Pleistocene and early Holocene depositional environments were favorable for the preservation of the archaeological record. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
The Lisan Peninsula is located within the Dead Sea basin which represents the plate boundary between African and Arabian plates. This basin constitutes a good example of a pull-apart basin because of its large dimensions, its structural simplicity and its active subsidence . The gravity data reveal that the Dead Sea basin can be divided into segments, each of them about 30 km long in N-S direction , where the Lisan Peninsula represents the deepest one (9 km thick Pleistocene sediments ), overlying about 6 km thick Mesozoic sediments . In addition , 20 km of extension was predicted along the Dead Sea basin, which indicates that the Dead Sea basin should be about 3.3 Ma in age . Furthermore, the Precambrian basement under the Lisan area is characterized by high susceptibility contrast that is related to continuous tectonic activity in the region.  相似文献   

12.
腾格里沙漠西北缘青土湖中更新世晚期以来沉积环境变迁   总被引:1,自引:0,他引:1  
王丽媛  程捷  辛蔚  昝立宏 《现代地质》2013,27(4):949-958
以腾格里沙漠西北缘青土湖钻孔ZK1为研究对象,通过对钻孔沉积物的光释光年代、粒度、磁化率等研究,揭示了该湖泊自中更新世晚期以来的环境变迁。研究结果表明:该地区中更新世晚期经历了干冷→暖湿两个阶段,晚更新世经历了湿暖→干冷两个阶段,与深海氧同位素的末次间冰期、末次冰期气候旋回特征吻合,全新世主要经历了干冷→暖湿的气候波动。反映了腾格里沙漠西北缘晚第四纪的气候波动变化特征,特别是为本区中更新世晚期以来的气候环境变化的研究提供了依据。  相似文献   

13.
Chlachula, J. & Serikov, Y. B. 2010: Last glacial ecology and geoarchaeology of the Central Trans‐Ural area: the Sosva River Upper Palaeolithic Complex, western Siberia. Boreas, 10.1111/j.1502‐3885.2010.00166.x. ISSN 0300‐9483. Quaternary and geoarchaeology studies from the eastern limits of the Ural Mountains provide multiple lines of evidence of the Palaeolithic peopling of this geographically marginal and still poorly explored territory of western Siberia following the mid‐last glacial (MIS 3) warming. A complex of investigated open‐air localities in the Sosva River basin (the north‐central Trans‐Ural area) at the periphery of the western Siberian Plain, distinguished by very high concentrations of Pleistocene megafaunal remains previously regarded as ‘mammoth cemeteries’, indicate, in conjunction with the associated diagnostic ivory/bone and stone industry, open occupation sites during the Last Glacial (MIS 2). Fossil faunal remains, dominated by mammoth (98%) together with bird and fish species, indicate various methods of exploitation of the Late Pleistocene natural resources and successful behavioural adaptation to the last glacial sub‐polar tundra‐steppe environment. The taphonomy and composition of the well‐preserved skeletal remains from the main occupation sites suggest both active hunting and anthropogenic ‘scavenging’ practices. The contextual geology and the cultural and biotic multi‐proxy records from the Trans‐Ural Upper Palaeolithic Complex provide new insights into the timing and palaeoecological conditions of the Pleistocene human occupation of north‐central Asia.  相似文献   

14.
We report the discovery of the oldest evidence for human presence in the southeastern Baltic Sea region. This paper presents an overview of the Riadino‐5 archaeological site in the lower course of the Šešupė River (Kaliningrad Oblast of Russia) and direct infrared stimulated luminescence (IRSL) ages for the culture‐bearing sediments from the site, which place the time of occupation well within the range of Marine Isotope Stage (MIS) 3 (ca 57–26 ka). Luminescence ages were determined using the multiple‐aliquot additive‐dose technique, applied to sand‐sized potassium feldspar. Four of the six IRSL samples from the site come from the cultural deposits, while two are from the surrounding sediments. The luminescence age of the deposits implies that human occupation of the southeastern Baltic Sea region occurred at least between 50 ka and 44 ka during the first half of MIS 3 and the Middle‐Upper Paleolithic.  相似文献   

15.
The alluvial–fluvial drainage system in the Wadi Araba, southern Jordan, incised into Cambrian clastic sedimentary and felsic igneous rocks giving rise to a disseminated Cu–(Mn) mineralization of diagenetic and epigenetic origin along the southern branch of the Dead Sea Transform Fault (=DSTF). During the Late Pleistocene and Holocene, the primary Cu sulfides were replaced by secondary minerals giving rise to hypogene to supergene encrustations, bearing Cu silicates, Cu carbonates, Cu oxychlorides and cupriferous vanadates. They occur in fissures, coat walls and developed even-rim/meniscus and blocky cements in the arenites near the surface. The first generation cement has been interpreted in terms of freshwater vadose hydraulic conditions, while the second-generation blocky cement of chrysocolla and malachite evolved as late cement. The Cu–Si–C fluid system within the Wadi Araba drainage system is the on-shore or subaerial facies of a regressive lacustrine regime called the “Lake Lisan Stage”, a precursor of the present-day Dead Sea. Radiocarbon dating (younger than 27,740 ± 1,570 years), oxygen-isotope-based temperature determination (hot brine-related mineralization at 60–80 °C, climate-driven mineralization at 25–30 °C) and thermodynamical calculations let to the subdivision of this secondary Cu mineralization into four stages, whose chemical and mineralogical composition was controlled by the variation of the anion complexes of silica and carbonate and the chlorine contents. The acidity of the pore water positively correlates with the degree of oxidation. The highest aridity and most intensive evaporation deduced from the thermodynamical calculations were achieved during stage 3, which is coeval with late Lake Lisan. Geogene processes causing Cu-enriched encrustations overlap with man-made manganiferous slags. The smelter feed has been derived mainly from Cu ore which developed during Late Pleistocene in the region.  相似文献   

16.
Distinguishing between naturally and culturally produced, simply flaked cobbles has been a problem for proponents of a pre‐Clovis occupation in the Americas. Several sites in Alberta have been assigned a pre‐Clovis status based on the presence of simply flaked cobbles found in Late Pleistocene till deposits. Historically, these types of assemblages have been assigned a cultural status based on subjective criteria and appeals to the analyst's expertise. To determine the archaeological status of two such assemblages from Alberta (Varsity Estates and Silver Springs), they were compared to a known natural assemblage and two known cultural assemblages. Chi‐square testing was used to evaluate several lithic attributes. Only those attributes that statistically differentiated between natural and cultural assemblages were used for further analyses. All cobbles were then scored using these attributes. A point was awarded when a statistically significant attribute of human‐manufacture was present. These points were then totaled, providing an aggregate score for each cobble. These scores were plotted to determine whether the test assemblages had closer affinities with the known natural or known cultural assemblages. The results indicate that the proposed pre‐Clovis assemblages have closer affinities to known natural assemblages than to cultural assemblages. Our results suggest that these sites provide no evidence for a pre‐Clovis occupation in the Americas. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
Remnant lake and stream terraces of the Wadi el Hasa (west-central Jordan) are associated with in situ prehistoric sites spanning > 100,000 years. Eighteen radiocarbon dates from cultural and geological deposits on the terraces facilitate the first comprehensive prehistoric landscape chronology for the southern Levant east of the Jordan Rift. In the eastern Hasa basin, the uppermost of three cut and fill surfaces (>20 m) is linked to massive fossil spring deposits and an early Middle Paleolithic occupation (100,000–70,000 B. P.), suggestive of considerably wetter climates. A later Middle Paleolithic occupation may be synchronous with the emergence of Pleistocene Lake Hasa (ca. 70,000 B. P.). Peak lake levels were attained 40,000 years ago. Dates proliferate after 25,000 B. P. and register recession of Lake Hasa (ca. 20,000 B. P.), an intervening erosional phase, and the initiation of complex humid-desiccation cycles for the terminal Pleistocene—Holocene (17,000–9,000 B. P.). The contemporary Wadi el Hasa channel began aggrading its floodplain after 8000 B. P. and was incised to its present depths 1000–500 years ago. The prehistoric landscape history of the Hasa drainage is broadly synchronous with sequences in the Rift Valley and Negev desert and offers baseline chronologies for the Late Quaternary of eastern Jordan and the Arabian peninsula. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The isotopic composition and mass balances of sources and sinks of sulfur are used to constrain the limnological–hydrological evolution of the last glacial Lake Lisan (70–14 ka BP) and the Holocene Dead Sea. Lake Lisan deposited large amounts of primary gypsum during discrete episodes of lake level decline. This gypsum, which appears in massive or laminated forms, displays δ34S values in the range of 14–28‰. In addition, Lake Lisan’s deposits (the Lisan Formation) contain thinly laminated and disseminated gypsum as well as native sulfur which display significantly lower δ34S values (−26 to 1‰ and −20 to −10‰, respectively). The calculated bulk isotopic compositions of sulfur in the sources and sinks of Lake Lisan lacustrine system are similar (δ34S ≈ 10‰), indicating that freshwater sulfate was the main source of sulfur to the lake. The large range in δ34S found within the Lisan Formation (−26 to +28‰) is the result of bacterial sulfate reduction (BSR) within the anoxic lower water body (the monimolimnion) and bottom sediments of the lake.

Precipitation of primary gypsum from the Ca-chloride solution of Lake Lisan is limited by sulfate concentration, which could not exceed 3000 mg/l. The Upper Gypsum Unit, deposited before ca. 17–15 ka, is the thickest gypsum unit in the section and displays the highest δ34S values (25–28‰). Yet, our calculations indicate that no more than a third of this Unit could have precipitated directly from the water column. This implies that during the lake level decline that instigated the precipitation of the Upper Gypsum Unit, significant amounts of dissolved sulfate had to reach the lake from external sources. We propose a mechanism that operated during cycles of high-low stands of the lakes that occupied the Dead Sea basin during the late Pleistocene. During high-stand intervals (i.e., Marine Isotopic Stages 2 and 4), lake brine underwent BSR and infiltrated the lake’s margins and adjacent strata. As lake level dropped, these brines, carrying 34S-enriched sulfate, were flushed back to the shrinking lake and replenished the water column with sulfate, thereby promoting massive gypsum precipitation.

The Holocene Dead Sea precipitated relatively small amounts of primary gypsum, mainly in the form of thin laminae. δ34S values of these laminae and disseminated gypsum are relatively constant (15 ± 0.7‰) and are close to present-day lake composition. This reflects the lower supply of freshwater to the lake and the limited BSR activity during the arid Holocene time and possibly during former arid interglacials in the Levant.  相似文献   


19.
王丽媛  辛蔚  程捷 《古地理学报》2014,16(2):239-248
根据腾格里沙漠西北缘青土湖ZK1孔晚第四纪以来沉积物孢粉组合、磁化率特征和光释光年代的研究,恢复了该区的植被面貌,论述了青土湖地区自中更新世晚期以来的气候变迁特征。研究结果表明,该地区中更新世晚期可划分为凉干和暖湿2个阶段;晚更新世可划分为暖湿和凉干2个阶段,并且与深海氧同位素曲线反映的末次间冰期、末次冰期的次一级气候旋回特征相吻合;全新世该地区主要经历了从暖湿到凉干的气候波动。  相似文献   

20.
The St. Louis site, located in the Plains–Parkland transition zone along the South Saskatchewan River, in Saskatchewan, Canada, is a multiple‐component site consisting of stratified floodplain alluvium with multiple, weakly developed soils. Human occupation at the site spans the Late Paleoindian to Middle Precontact periods (10,000–5,000 14C yr B.P.), a time poorly represented archaeologically on the Northern Plains. The dearth of early–middle Holocene‐age archaeological sites is often attributed to reduced inhabitability of the Northern Plains during the Hypsithermal, a period of maximum aridity and limited water availability. Stable isotope and phytolith data from the site indicate increased temperatures during the Hypsithermal and an expansion of Northern Plains grasslands into north‐central Saskatchewan. Although characterized by increased xeric conditions, human occupation at the St. Louis site, as well as the predominance of C3 grasses, attests to the habitability of Northern Plains river systems during this time period. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号