首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global pattern of the ionospheric response to large-scale acoustic gravity waves (LS AGW) has been constructed on the basis of an analysis of the large data set available during the 22 March 1979, magnetic storm. Ground-based ionospheric measurements and in-situ satellite measurements from Cosmos-900 were used in this study together with the Joule heating distribution in the high-latitude ionosphere specifically taken at the maxima of two substorms. The characteristics of the reconstructed planetary pattern of the LS AGW have been analysed in detail. It has been established that the LS AGW effects in the ionosphere in terms of both universal and local time were determined by the pattern of high-latitude atmospheric heating, and that the wave front of the LS AGW during both substorms covered practically all local times, i.e. all longitudes. In addition, it was established that one of the sources of the LS AGW was the thermospheric heating in the day-side cusp region. The local time dependence of the amplitude of the AGW effect in both maximum height, hmF2, and critical frequency, fOF2, has been reconstructed for the mid-latitude F2 layer. The AGW effects were clearly separated from the electric field effects related to turnings of the interplanetary magnetic field (IMF) BZ. In the day-time, electric field effects prevailed over the AGW effects, but during the night-time the amplitudes of these two effects were comparable. In contrast to the common view, fOF2 variations after the AGW passage had a quasi-sinusoidal character both in the day-time and in the night-time. In the night-time ionosphere a high degree of symmetry was observed for the AGW effects in Northern and Southern hemispheres. During the day-time a significant asymmetry was observed in the American longitudinal sector which was related largely to the peculiarities of the heating pattern in the high-latitude ionospheres of the Northern and Southern hemispheres. These observations demonstrate the complexity of the response of the ionosphere at all latitudes to heating of the auroral region.  相似文献   

2.
The results of a model study of the acoustic gravity wave (AGW) propagation from the Earth’s surface to the upper atmospheric altitudes have been considered. Numerical calculations have been performed using a nonhydrostatic model of the atmosphere, which takes into account nonlinear and dissipative processes originating when waves propagate upward. The model source of atmospheric disturbances has been specified in an area localized on the Earth’s surface. The disturbance source frequency spectrum includes harmonics at frequencies of 0.5ωg-1.5ωgg is the Brunt-Väisälä frequency near the Earth’s surface). The calculations indicated that AGW propagation and dissipation over the source result in the fact that the region of large-scale spatial disturbances of the upper atmosphere mean state is formed at ~200 km altitudes. This region substantially affects AGW propagation and results in waveguide propagation of AGWs with periods shorter than the Väisälä-Brunt period at the altitude of a disturbed atmosphere. The dissipation of AGWs propagating in such a waveguide results in a waveguide horizontal expansion. The extension of the disturbed region of the mean state of the upper atmosphere and, consequently, the waveguide length can reach ~1000 km, if the AGW ground source operates for ~1 h. The physical mechanism by which large-scale disturbances are formed in the upper atmosphere, based on the propagation and dissipation of AGWs with periods shorter than the Väisälä-Brunt period in the upper atmosphere, explains why these disturbances are rapidly generated and localized above AGW sources located on the Earth’s surface or in the lower atmosphere.  相似文献   

3.
Variations in the dayside ionosphere parameters as a result of a large-scale acoustic gravity wave (LS AGW) were studied for the 17 February 1998 substorm using the super dual auroral radar network (SuperDARN) measurements. This event was characterised by a sharp rise in the AE index with a maximum of ~900 nT. The source of the disturbance responsible for the LS AGW appears to have been located within the plasma convection throat and in the dayside cusp region. The location of the source was obtained from studies of a number of datasets including high-latitude convection maps, data from 4 DMSP satellites and networks of ground-based magnetometers. The propagation of the LS AGWs caused quasi-periodic variations in the skip distance (with an amplitude up to 220–260 km) of the ground backscatter measured by up to 6 SuperDARN radars, including Goose Bay and Kapuskasing, resulting in two large-scale travelling ionospheric disturbances (LS TIDs). The LS TIDs had wave periods of 1.5 and 2 h, a velocity of ~400 m/s for both, and wavelengths of 2200 and 2900 km, respectively. These quasi-periodic variations were also present in the peak electron density and height of the F2 layer measured by the Goose Bay ionosonde. The numerical simulation of the inverse problem show good agreement between Goose Bay radar and Goose Bay ionosonde measurements. But these LS TIDs would be difficult to deduce from the ground based ionospheric station data alone, because hmF2 variations were 10–40 km only and fOF2 variations between 10% and 20%. The results demonstrate how important SuperDARN radars can be, and that this is a more powerful technique than routine ground-based sounding for studies of weak quasi-periodic variations in the dayside subauroral ionosphere related to LS AGW.  相似文献   

4.
This paper presents results from the TIME-GCM-CCM3 thermosphere–ionosphere–lower atmosphere flux-coupled model, and investigates how well the model simulates known F2-layer day/night and seasonal behaviour and patterns of day-to-day variability at seven ionosonde stations. Of the many possible contributors to F2-layer variability, the present work includes only the influence of ‘meteorological’ disturbances transmitted from lower levels in the atmosphere, solar and geomagnetic conditions being held at constant levels throughout a model year.In comparison to ionosonde data, TIME-GCM-CCM3 models the peak electron density (NmF2) quite well, except for overemphasizing the daytime summer/winter anomaly in both hemispheres and seriously underestimating night NmF2 in summer. The peak height hmF2 is satisfactorily modelled by day, except that the model does not reproduce its observed semiannual variation. Nighttime values of hmF2 are much too low, thus causing low model values of night NmF2. Comparison of the variations of NmF2 and the neutral [O/N2] ratio supports the idea that both annual and semiannual variations of F2-layer electron density are largely caused by changes of neutral composition, which in turn are driven by the global thermospheric circulation.Finally, the paper describes and discusses the characteristics of the F2-layer response to the imposed ‘meteorological’ disturbances. The ionospheric response is evaluated as the standard deviations of five ionospheric parameters for each station within 11-day blocks of data. At any one station, the patterns of variability show some coherence between different parameters, such as peak electron density and the neutral atomic/molecular ratio. Coherence between stations is found only between the closest pairs, some 2500 km apart, which is presumably related to the scale size of the ‘meteorological’ disturbances. The F2-layer day-to-day variability appears to be related more to variations in winds than to variations of thermospheric composition.  相似文献   

5.
Nighttime height profiles of the amplitudes of large-scale traveling ionospheric disturbances (LSTIDs) obtained from the data of vertical sounding in Almaty (76°55′ E, 43°15′ N) for the period 2000–2007 are analyzed. The height profiles are plotted using the time variations in electron density N h (t) at a series of heights for the F region in the ionosphere with a height step of 10 km. In total, observations were conducted during 1166 nights, among which 581 nights are characterized by wave activity. Nights with the maximum amplitude of variations in N h (t) exceeding 25% are selected for analysis. The total number of such nights is 63; LSTIDs have been recorded in both magnetically quiet and active periods. The regressive ratios between the height of the F-region maximum and the height that corresponds to the maximum absolute amplitude of a wave, as well as between the values of the maximum amplitude at a height profile and the value of the amplitude of variations in N m F(t) at the layer maximum, are obtained.  相似文献   

6.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

7.
Formation mechanism of the spring–autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere–plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring–autumn asymmetry of NmF2: first, the spring–autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring–autumn asymmetry of NmF2.  相似文献   

8.
The propagation of atmospheric gravity waves (AGWs) is studied in the context of geometrical optics in the nonisothermal, viscous, and thermal-conductive atmosphere of Earth in the presence of wind shifts. Parametric diagrams are plotted, determining the regions of allowed frequencies and horizontal phase velocities of AGWs depending on the altitude. It is shown that a part of the spectrum of AGWs propagates in stationary air in an altitude range from the Earth’s surface through the ionospheric F1 layer. AGW from nearearth sources attenuate below 250 km, while waves generated at altitudes of about 300 km and higher do not reach the Earth’s surface because of the inner reflection from the thermosphere base. The pattern changes under strong thermospheric winds. AGW dissipation decreases with an adverse wind shift and, hence, a part of the wave spectrum penetrated from the lower atmosphere to the altitudes of F2 layer.  相似文献   

9.
We present the results of complex experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the European Incoherent Scatter Scientific Association (EISCAT) facilities. During the ionospheric F-region heating by powerful extraordinary (X-mode) polarized HF radiowaves under the conditions of heating near the critical f H frequency f Hf x F2 of the extraordinary wave of the F2-layer, we were first to detect the excitation of intense artificial small-scale ionospheric irregularities (ASIs), accompanied by electron temperature increases by approximately 50%. The results of coordinated satellite and ground-based observations of the powerful HF radiowave impact on the high-latitude ionosphere are considered. During ionospheric F-region heating by powerful HF radiowaves of ordinary polarization (O-mode) during evening hours, the phenomenon of ion outflow accompanied by electron temperature increases and thermal plasma expansion was revealed. Concurrent DMSP-F15 satellite measurements at a height of about 850 km indicate an O+ ion density increase. The CHAMP satellite observations identified ULF emissions at the modulation frequency (3 Hz) of the powerful HF radiowave, generated during modulated emissions of the powerful HF radiowave of O-polarization and accompanied by a substantial increase in the electron temperature and ASI generation.  相似文献   

10.
Observations of traveling ionospheric disturbances (TIDs) associated with atmospheric gravity waves (AGWs) generated by the moving solar terminator have been made with the Millstone Hill incoherent scatter radar. Three experiments near 1995 fall equinox measured the AGW/TID velocity and direction of motion. Spectral and cross-correlation analysis of the ionospheric density observations indicates that ST-generated AGWs/TIDs were observed during each experiment, with the more-pronounced effect occurring at sunrise. The strongest oscillations in the ionospheric parameters have periods of 1.5 to 2 hours. The group and phase velocities have been determined and show that the disturbances propagate in the horizontal plane perpendicular to the terminator with the group velocity of 300–400 m s–1 that corresponds to the ST speed at ionospheric heights. The high horizontal group velocity seems to contradict the accepted theory of AGW/TID propagation and indicates a need for additional investigation.  相似文献   

11.
The results of an analysis of the possible effect of auroral electron fluxes on the effective recombination coefficient αeff in the ionosphere are presented. It is shown that the αeff value in the E-region of the ionosphere is determined mainly by the physical-chemical properties of the medium. In the F1-layer of the ionosphere, the effective recombination coefficient becomes dependent on both the value of the energy flux and the type of the energy spectrum of the auroral electron flux.  相似文献   

12.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

13.
Using mass-spectrometric measurement data from the Dynamics Explorer 2 satellite, we investigated the distribution of medium-scale acoustic gravity waves (AGWs) at altitudes of the F-region of the ionosphere. It is shown that the planetary field of AGWs contains a regular and a sporadic component. The regular distribution of AGWs involves active polar areas (where the ionosphere is highly disturbed) and a relatively calm equatorial area. Sporadic AGWs are isolated and spatially localized wave packets that are distinguished against the background of the regular distribution of the wave field. We generated a directory containing observations of sporadic AGW for the period January–February 1983 and performed a statistical analysis of their relation to earthquakes.  相似文献   

14.
15.
The possible role, on L-band scintillation activity, played by the nighttime magnetic meridional component of the thermospheric horizontal neutral winds, the post-sunset F-layer base height, the electrical field pre-reversal enhancement (PRE) and the latitudinal gradients of the F2-layer peak density is analyzed, considering different cases of scintillation occurrence (and their latitudinal extent) during August and September 2002. The meridional winds were derived over low-latitudes from a modified form of the nonlinear time-dependent servo-model. A chain of two scintillation monitors and three digital ionosondes was operational in Brazil and used to collect, respectively, global positioning system signal amplitude scintillation and ionospheric height (hF; hpF2) and frequency (foF2) parameters. From the overall behavior in the 2 months analyzed, the results suggest that high near sunset upward vertical plasma drifts are conducive for the generation of spread-F irregularities, whereas large poleward meridional winds tend to suppress the development of plasma bubble irregularities and the occurrence of their associated scintillations. Even when generated, a reduced fountain effect, due to weak electric field PRE, acts for the bubbles to be expanded less effectively to higher latitudes. The results also reveal that high F-layer base and peak heights (at equatorial and off-equatorial latitudes), and intense gradients in the F2-peak density between the dip equator and the equatorial anomaly crests, are favorable conditions for the generation of F-region irregularities and increased scintillation activity. Other distinct features of the controlling factors in the cases of occurrence and non-occurrence of equatorial scintillations are presented and discussed.  相似文献   

16.
Parameters of split shear waves from local earthquakes in the area of the PET IRIS station (town of Petropavlovsk-Kamchatski) were measured over the period 1993–2002 for the study of anisotropic properties of rocks in the subduction zone and variations in the fast azimuth of the fast shear wave (?). The dominating fast shear wave polarization directions were oriented in 1993–2002 along N90°E ± 20° in agreement with the direction of the Pacific plate motion. The normalized shear wave delay times δt SS increase to a depth of 150 km. The values of δt SS are largest (up to 20 ms/km) for earthquakes at depths of 50–60 and 90–150 km and smallest (up to 6 ms/km) for earthquakes at depths greater than 200 km. The fast azimuths for events with H < 80 km are described in terms of a horizontal transversely isotropic (HTI) model of the medium, with the axis oriented northward. Temporal variations in the fast azimuths with an amplitude of up to 90° and a predominant period of about 400–600 days are observed for events at depths of 80–120 km. The anisotropy of rocks is described by effective models of the orthorhombic and HTI symmetries. The predominant fast shear wave fast azimuths from events at depths of 120–310 km vary with time: the polarization axis was oriented to the north in 1993–1995, to the north and east in 1996–1998, to the east in 1999–2000, and to the northeast and southeast in 2001–2002. The anisotropy of rocks can be described in terms of the HTI model with the symmetry axis subparallel to the focal zone dip.  相似文献   

17.
Using the data of the ionospheric vertical sounding in Almaty, the response of various parameters of the nighttime F layer to the passage of an atmospheric gravity wave, generated during the large magnetic storm on July 24–25, 2004, is studied. The analysis of the phase relations between the variations in the electron density at the F layer maximum (NmF), the layer maximum height (hmF), and the layer half-thickness showed that they are determined by the slope of the wave phase front. It is shown that the half-thickness of the layer changes in anti-phase with the variations in NmF2. The known fact that the amplitudes of variations in the critical frequencies of the F 2 layer are smaller than the amplitudes of electron density variations at fixed heights is explained.  相似文献   

18.
A self-consistent method for day-time F2-region modelling was applied to the analysis of Millstone Hill incoherent scatter observations during the storm period of March 16-22, 1990. The method allows us to calculate in a self-consistent way neutral composition, temperature and meridional wind as well as the ionized species height distribution. Theoretically calculated Ne(h) profiles fit the observed daytime ones with great accuracy in the whole range of heights above 150 km for both quiet and disturbed days. The overall increase in Tex by 270 K from March 16 to March 22 reflects the increase of solar activity level during the period in question. A 30% decrease in [O] and a twofold increase in [A^] are calculated for the disturbed day of March 22 relative to quiet time prestorm conditions. Only a small reaction to the first geomagnetic disturbance on March 18 and the initial phase of the second storm on March 20 was found in [O] and [N2] variations. The meridional neutral wind inferred from plasma vertical drift clearly demonstrates the dependence on the geomagnetic activity level being more equatorward on disturbed days. Small positive F2-layer storm effects on March 18 and 20 are totally attributed to the decrease in the northward neutral wind but not to changes in neutral composition. A moderate (by a factor of 1.5) O/ N2 ratio decrease relative to the MSIS-83 model prediction is required to describe the observed NmF2 decrease on the most disturbed day of March 22, but virtually no change of this ratio is needed for March 21.  相似文献   

19.
This paper reports a study in the distribution of parameters of split shear waves excited by deep earthquakes in the Sakhalin and Hokkaido area, with the orientation of the axes of symmetry in the earth being estimated assuming a viscoelastic anisotropic model for the mantle. A mantle flow along NW 310° ± 20° has been identified beneath the Japan Sea. The flow is inclined at an angle of 20–30° relative to the horizontal plane and is consistent with the motion of the Pacific plate. Beneath the southern Sea of Okhotsk the fast a-axis [100] of olivine is oriented NE 30 ± 15°, nearly parallel to the trend of the Kuril arc, while the c-axis [001] is inclined at ~35° relative to the horizontal plane. Bearing in mind the increased heat flow in the region, we assume the development of a mantle flow along the olivine c-axis at NW 300° ± 20° and with the shear plane [010] in the conditions of partial mantle melting (the B-type LPO). The lowest anisotropy (1–2.5%) was identified beneath Sakhalin and the greatest (3–5%) beneath the Japan Sea. An increasing degree of anisotropy is also noted to occur with an increasing depth of focus (down to 350 km).  相似文献   

20.
Abstract

Exact solutions are obtained for a quasi-geostrophic baroclinic stability problem in which the rotational Froude number (inverse Burger number) is a linear function of the height. The primary motivation for this work was to investigate the effect of a radially-variable, dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, synoptic-scale, atmospheric model experiment for a Spacelab flight. Such an experiment cannot be realized in a laboratory on the Earth's surface because the body force cannot be made strong enough to dominate terrestrial gravity. Flow in a rotating, rectilinear channel with a vertically variable body force and with no horizontal shear of the basic state is considered. The horizontal and vertical temperature gradients of the basic and reference states are taken as constants. Consequences of the body force variation and the other assumptions of the model are that the static stability (Brunt-Väisälä frequency squared) and the vertical shear of the basic state flow have the same functional form and that the transverse gradient of the potential vorticity of the basic state vanishes. The solutions show that the stability characteristics of the model are qualitatively similar to those of Eady's model. A short wavelength cutoff and a wavenumber of maximum growth rate are present. Further, the stability characteristics are quantitatively similar to Eady's results for parameters based on the vertically averaged Brunt-Väisälä: frequency. The solutions also show that the temperature amplitude distribution is particularly sensitive to the vertical variation of the static stability. For the static stability and shear decreasing (increasing) with height a relative enhancement of the temperature amplitude occurs at the lower (upper) surface. The other amplitudes and phases are only slightly influenced by the variation. The implication for the Spacelab experiment is that the variable body force will not significantly alter the dynamics from the constant gravity case. The solutions can be relevant to other geophysical fluid flows, including the atmosphere, ocean and annulus system in which the static stability undergoes variation with height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号