首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study on the retrieval sensitivity of the column-averaged dry-air mole fraction of CO2 (XCO2) for the Chinese carbon dioxide observation satellite (TanSat) with a full physical forward model and the optimal estimation technique. The forward model is based on the vector linearized discrete ordinate radiative transfer model (VLIDORT) and considers surface reflectance, gas absorption, and the scattering of air molecules, aerosol particles, and cloud particles. XCO2 retrieval errors from synthetic TanSat measurements show solar zenith angle (SZA), albedo dependence with values varying from 0.3 to 1 ppm for bright land surface in nadir mode and 2 to 8 ppm for dark surfaces like snow. The use of glint mode over dark oceans significantly improves the CO2 information retrieved. The aerosol type and profile are more important than the aerosol optical depth, and underestimation of aerosol plume height will introduce a bias of 1.5 ppm in XCO2. The systematic errors due to radiometric calibration are also estimated using a forward model simulation approach.  相似文献   

2.
A combined Raman–Rayleigh lidar has been designed at Chung-Li, Taiwan for the simultaneous measurement of water-vapor mixing ratio, temperature and extinction-to-backscatter ratio of aerosol in the lower troposphere. The technique of Raman–Rayleigh lidar can retrieve correct temperature profile in the lower troposphere where the measurements are underestimated due to the aerosol loading. Two typical cases are discussed under different humidity (dry/wet) conditions. The water vapor and temperature profile have shown a good agreement with radiosonde. Simultaneous measurement of Raman–Rayleigh lidar also illustrates the physical nature of the aerosol and is useful in understanding the effects of humidity on aerosol swelling.  相似文献   

3.
Reinvestigation on mixing length in an open channel turbulent flow   总被引:1,自引:0,他引:1  
The present study proposes a model on vertical distribution of streamwise velocity in an open channel turbulent flow through a newly proposed mixing length, which is derived for both clear water and sediment-laden turbulent flows. The analysis is based on a theoretical consideration which explores the effect of density stratification on the streamwise velocity profile. The derivation of mixing length makes use of the diffusion equation where both the sediment diffusivity and momentum diffusivity are taken as a function of height from the channel bed. The damping factor present in the mixing length of sediment-fluid mixture contains velocity and concentration gradients. This factor is capable of describing the dip-phenomenon of velocity distribution. From the existing experimental data of velocity, the mixing length data are calculated. The pattern shows that mixing length increases from bed to the dip-position, having a larger value at dip-position and then decreases up to the water surface with a zero value thereat. The present model agrees well with these data sets and this behavior cannot be described by any other existing model. Finally, the proposed mixing length model is applied to find the velocity distribution in wide and narrow open channels. The derived velocity distribution is compared with laboratory channel data of velocity, and the comparison shows good agreement.  相似文献   

4.
With the intensification of pollution and urbanization, the aerosol radiation effect continues to play an important role in the urban boundary layer. In this paper, a winter pollution process in Beijing has been taken as an example, and a new aerosol vertical profile in the radiative parameterization scheme within the Weather Forecast Research and Forecasting (WRF) model has been updated to study the effect of aerosols on radiation and the boundary layer. Furthermore, the interactions among aerosols, urbanization, and planetary boundary layer (PBL) meteorology were discussed through a series of numerical experiments. The results show the following: (1) The optimization improves the performance of the model in simulating the distribution features of air temperature, humidity, and wind in Beijing. (2) The aerosols reduce the surface temperature by reducing solar radiation and increasing the temperature in the upper layer by absorbing or backscattering solar radiation. The changes in the PBL temperature lead to more stable atmospheric stratification, reducing the energy transfer from the surface and the height of the boundary layer. (3) With the increase in the aerosol optical depth, the atmospheric stratification most likely becomes stable over rural areas, most likely becomes stable over suburb areas, and has great difficultly becoming stable over urban areas. Aerosol radiative forcing, underlying urban surfaces, and the interaction between them are the main factors that affect the changes in the meteorological elements in the PBL.  相似文献   

5.
This paper presents application of the EULAG model combined with a sophisticated double-moment warm-rain microphysics scheme to the model intercomparison case based on RICO (Rain in Cumulus over Ocean) field observations. As the simulations progress, the cloud field gradually deepens and a relatively sharp temperature and moisture inversions develop in the lower troposphere. Two contrasting aerosol environments are considered, referred to as pristine and polluted, together with two contrasting subgridscale mixing scenarios, the homogeneous and the extremely inhomogeneous mixing. Pristine and polluted environments feature mean cloud droplet concentrations around 40 and 150 mg?1, respectively, and large differences in the rain characteristics. Various measures are used to contrast evolution of macroscopic cloud field characteristics, such as the mean cloud fraction, the mean cloud width, or the height of the center of mass of the cloud field, among others. Macroscopic characteristics appear similar regardless of the aerosol characteristics or the homogeneity of the subgrid-scale mixing.  相似文献   

6.
A one‐dimensional, two‐layer solute transport model is developed to simulate chemical transport process in an initially unsaturated soil with ponding water on the soil surface before surface runoff starts. The developed mathematical model is tested against a laboratory experiment. The infiltration and diffusion processes are mathematically lumped together and described by incomplete mixing parameters. Based on mass conservation and water balance equations, the model is developed to describe solute transport in a two‐zone layer, a ponding runoff zone and a soil mixing zone. The two‐zone layer is treated as one system to avoid describing the complicated chemical transport processes near the soil surface in the mixing zone. The proposed model was analytically solved, and the solutions agreed well with the experimental data. The developed experimental method and mathematical model were used to study the effect of the soil initial moisture saturation on chemical concentration in surface runoff. The study results indicated that, when the soil was initially saturated, chemical concentration in surface runoff was significantly (two orders of magnitude) higher than that with initially unsaturated soil, while the initial chemical concentrations at the two cases were of the same magnitude. The soil mixing depth for the initially unsaturated soil was much larger than that for the initially saturated soil, and the incomplete runoff mixing parameter was larger for the initially unsaturated soil. The higher the infiltration rate of the soil, the greater the infiltration‐related incomplete mixing parameter. According to the quantitative analysis, the soil mixing depth was found to be sensitive for both initially unsaturated and saturated soils, and the incomplete runoff mixing parameter was sensitive for initially saturated soil but not for the initially unsaturated soil; the incomplete infiltration mixing parameter behaved just the opposite. Some suggestions are made for reducing chemical loss from runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
基于华北典型污染地区的地基多轴差分吸收光谱仪(MAX-DOAS)近4年的观测数据,利用最优估计算法和LIDORT辐射传输模式反演了该区域气溶胶的消光系数垂直廓线和光学厚度(AOD).MAX-DOAS观测反演的AOD与全球气溶胶观测网络同波段在华北地区的AOD间具有很好的一致性,相关系数都在0.9以上,证明MAX-DOAS具备对华北污染区域气溶胶光学厚度和消光系数垂直廓线的反演能力.AOD的反演误差表现为冬季最大,春夏最小,早晚大于正午,这是因为冬季以及早晚太阳天顶角较大导致信噪比偏小,所以AOD反演误差偏大.反演廓线表明该区域气溶胶主要集中在1 km以下的边界层,浓度随高度呈指数递减,部分情况下峰值出现在300 m处;气溶胶光学厚度夏季最大,冬季最小,正午较大,早晚较小.在东风条件下浓度最高,表明东边(即重工业城市唐山方向)的输送对香河和周边区域的气溶胶积聚有重要贡献.  相似文献   

8.
This paper discusses a model which simulates dune development resulting from aeolian saltation transport. The model was developed for application to coastal foredunes, but is also applicable to sandy deserts with transverse dunes. Sediment transport is calculated using published deterministic and empirical relationships, describing the influence of meteorological conditions, topography, sediment characteristics and vegetation. A so-called adaptation length is incorporated to calculate the development of transport equilibrium along the profile. Changes in topography are derived from the predicted transport, using the continuity equation. Vegetation height is incorporated in the model as a dynamic variable. Vegetation can be buried during transport events, which results in important changes in the sediment transport rates. The sediment transport model is dynamically linked to a second-order closure air flow model, which predicts friction velocities over the profile, influenced by topography and surface roughness. Modelling results are shown for (a) the growth and migration of bare, initially sine-shaped dunes, and (b) dune building on a partly vegetated and initially flat surface. Results show that the bare symmetrical dunes change into asymmetric shapes with a slipface on the lee side. This result could only be achieved in combination with the secondorder closure model for the calculation of air flow. The simulations with the partly vegetated surfaces reveal that the resulting dune morphology strongly depends on the value of the adaptation length parameter and on the vegetation height. The latter result implies that the dynamical interaction between aeolian activity and vegetation (reaction to burial, growth rates) is highly relevant in dune geomorphology and deserves much attention in future studies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the detailed laboratory experiments and theoretical analysis, a new three-layer model is proposed to predict the vertical velocity distribution in an open channel flow with submerged vegetation. The time averaged velocity and turbulence behaviour of a steady uniform flow with fully submerged artificial rigid vegetation was measured using a 3D Micro ADV, and the vertical distribution of velocity and Reynolds shear stress at different vegetation height, vegetation density and measuring positions were obtained. The results show that the velocity profile consists of three hydrodynamic regimes (i.e. the upper non-vegetated layer, the outer and bottom layer within vegetation); accordingly different methods had been adopted to describe the vertical velocity distribution. For the upper non-vegetated layer, a modified mixing length theory combined with the concept of ‘the new vegetation boundary layer’ was adopted, and an analytical model was presented to predict the vertical velocity distribution in this region. For the bottom layer within vegetation, the depth average velocity was obtained by numerically solving the momentum equations. For the upper layer within vegetation, the analytical solution was presented by expressing the shear stress as a formula fitted to the experimental data. Finally, the analytical predictions of the vertical velocity over the whole flow depth were compared with the results obtained by other researchers, and the good agreement proved that the three-layer model can be used to predict the velocity distribution of the open channel flow with submerged rigid vegetation.  相似文献   

11.
东亚地区春季黑碳气溶胶源排放及其浓度分布   总被引:25,自引:1,他引:24       下载免费PDF全文
本研究收集整理了东亚地区一个黑碳气溶胶的排放源,并利用一个三维化学输送模式系统模拟研究了东亚地区春季黑碳气溶胶的输送和演变过程.黑碳气溶胶浓度的模拟值与地面观测站和观测船获取的监测值相比,模拟值与监测值具有良好的一致性,这表明本研究收集整理的黑碳气溶胶的排放量及其分布是基本合理的,模式系统较好地反映了黑碳气溶浓度的时空分布和变化趋势,再现了许多观测到的重要特征.模拟结果表明,东亚地区春季间隙性的长距离输送对于西北太平洋海域的黑碳气溶胶浓度分布具有非常重要的影响.  相似文献   

12.
Abstract

In urban air pollution modelling mixing height is an important input parameter. Several methods to determine minimum mixing heights are compared and their advantages and drawbacks discussed. By using Holtzworth's method to calculate minimum and maximum mixing heights and by interpolating between the two values, statistics of hourly mixing heights for the city of Vienna are determined. Suitable categories of mixing heights for a Gaussian urban air pollution model are found by taking into account the specific emission situation of the city, thus assuring that best use is made of the input capacity of the model.  相似文献   

13.
This paper presents a one-dimensional steady-state model to investigate the sensitivity of the dynamics of sustained eruption columns to radius variations with height due to thermal expansion of the entrained air, and decreases in atmospheric pressure with height. In contrast to a number of previous models using an equation known as the entrainment assumption, the new model is based on similarity arguments to derive an equation set equivalent to the model proposed by Woods [Bull Volcanol 50:169–193, 1988]. This approach allows investigation of the effect of gas compressibility on the entrainment rate of ambient air, which has been little examined for a system in which a decrease in pressure significantly affects the density stratification of a compressible fluid. The new model provides results that include two end members: one in which the volume change within the eruption columns affects only the radial expansion without changing the vertical motion, and the other is the converse. The Woods [Bull Volcanol 50:169–193, 1988] model can be regarded as being between those two end members. The range of uncertainty arises because the extremely high temperature of discharged materials from a volcanic vent, and the exceptional terminal height of the eruption columns, allow significant expansion of the gas component in the eruption columns, making them behave differently from common turbulent plumes. This study indicates that the maximum height of the eruption columns is affected considerably by this uncertainty, particularly when the eruption columns extend above a height of 10 km, at which the pressure is about one-fourth the pressure at the ground surface. Column collapse may also be suppressed in wider parameter ranges than previously estimated. However, the uncertainty can be reduced by measuring column radii through a vertical profile during actual volcanic eruptions. Accordingly, this paper suggests that appropriate observation of eruption column shapes is essential for improving our understanding of the dynamics of eruption columns.  相似文献   

14.
— This paper examines the spatial and temporal distributions of the mixing height, ventilation coefficient (defined as the product of mixing height and surface wind speed), and cloud cover over the eastern United States during the summer of 1995, using the high-resolution meteorological data generated by MM5 (Version 1), a mesoscale model widely used in air quality studies. The ability of MM5 to simulate the key temporal and spatial features embedded in the time series of observations of temperature, wind speed, and moisture is assessed using spectral decomposition methods. Also, mixing heights estimated from the MM5 outputs are compared with those derived from observations at a few locations where data with high temporal resolution are available in the Northeast. In addition, the uncertainties associated with the estimation of the evolution of the boundary layer during the morning time are examined. The results indicate that nighttime mixing heights averaged <200?m, rising to 1 km by 10 EST, and to about 2.5?km in the afternoon. Ventilation coefficients followed a similar diurnal pattern, increasing from 500?m2/s at night?to 15,000?m2/s in the afternoon; the increase due to the growing mixing height and increasing surface wind speeds. Spatial variability of these parameters was relatively small (coefficient of variation=0.25) at?night and in the afternoon when conditions were quasi-stationary, but increased (to 0.5) during morning?and evening hours when mixing heights and wind speeds were changing rapidly. Analyses of surface ozone observations from about 400 sites throughout the eastern United States indicate that days with numerous stations reporting surface ozone concentrations in excess of 80 ppb (i.e., “high ozone” days) generally had less daytime cloud cover, lower surface wind speeds, higher mixing heights, and lower ventilation coefficients than did comparable “low ozone” days. Such meteorological features are consistent with a synoptic anticyclone centered over the mid-south region (Kentucky, Tennessee). Low ozone days were characterized by more disturbed weather conditions (low pressure systems, fronts, greater cloud cover, and precipitation events). Ozone observations at two elevated platforms (~400?m agl) in Garner, NC, and Chicago, IL, indicated that ozone concentrations aloft were about 40% larger on “high ozone” days than on “low ozone” days. On average, high levels of ozone persist aloft for about 2 to 3 days. Strong vertical mixing in the daytime can bring this pool of upper-level ozone downward to augment surface ozone production. Since ozone can be transported downwind several hundred kilometers from its source region over this time scale, depending on upper-level winds, effective ozone control strategies must take into consideration spatial scales ranging from local to regional, and time scales of the order of several days.  相似文献   

15.
Quantifying aeolian sand transport rates relies upon the computation of the near-surface shear velocity (u*) determined from velocity profiles of the wind. While it has been recognized that various conditions, such as saltation, surface roughness, surface slope and atmospheric conditions, have an effect on the velocity profile, it is commonly assumed that measurements made above the surface will be representative of the near-surface shear velocity. Airflow and temperature data collected over a flat substrate at White Sands National Monument in New Mexico, however, show the significant effects that atmospheric conditions have on velocity profiles. During the day, when solar insolation is heating the surface, atmospheric conditions in the lowest several metres become unstable, resulting in enhanced convection and vertical mixing so that the velocity gradient changes little with height. As a result, the shear stress in this region of vertical mixing lessens, while the near-surface shear stress is increased because the higher wind speeds are now nearer the surface. At night, the near-surface atmospheric conditions are stable, thereby reducing convection and vertical mixing, resulting in stratified airflow and increased shear velocity away from the surface. Unless this atmospheric effect is accounted for, estimates of sediment transport rates may be in error by as much as a factor of 15 times when wind speeds are near threshold velocity. At wind speeds approaching 10 ms1, at 5m above the surface, this error in computing sediment transport is reduced to a factor of only two to three times, and may be within the range of measurement error.  相似文献   

16.
Simulation of secondary aerosols over North China in summer   总被引:2,自引:0,他引:2  
The comparisons of observed and simulated NOx, CO, O3, NH3, HNO3, SO2 and PM2.5 indicate that CMAQ model can simulate variations of pollutants over North China well.Moreover, the model results show that high NH3 is in Hebei, Henan and Shandong provinces,with average concentration of (30-35)×10-9. The results of the sensitive experiment indicate that high concentration of NH3 has the efficiency of the production of secondary sulfate aerosol increase by more than 30%, especially at the juncture of Handan, Anyang and Changzhi that increased by 50%. In addition, NH3 also produces secondary ammonia and nitrate aerosol, and the sum of them is approximately equal to sulfate aerosol. The height of planetary boundary layer (PBL) in Beijing is higher in daytime, with average height of 1500 m at noon. This makes SO2,NH3 and HNO3 transported into upper PBL of 850 hPa. The high secondary sulfate, and ammonia and nitrate aerosol happen in the upper and lower PBL, respectively. Because PM2.5 lifetime is relatively long, it can be transported into the middle troposphere to form a thick aerosol layer,which is the arched roof of aerosol. The model result suggests that if the aerosol concentration in North China would be controlled, the reduction of NH3 emission is one of efficient ways besides the reduction of primary SO2, NOx and aerosol emission.  相似文献   

17.
基于简化的群桩动力计算模型,采用有限元子结构方法和薄层法,提出了与工程实际情况更为接近的完全埋入、部分埋入群桩和刚性桩筏基础的计算方法。分析了层状地基中不同激振频率条件下,承台板厚度、桩间距对于群桩动力阻抗的影响,研究了不同承台板厚度条件下群桩阻抗的分布规律。通过与传统刚性承台下群桩动力特性的比较分析,验证了本模型的合理性。  相似文献   

18.
Altitude profile of aerosol Single Scattering Albedo (SSA), derived from simultaneous in-situ airborne measurements of the coefficients of aerosol absorption and scattering off the west coast of India over the Arabian Sea (AS), during January 2009 is presented. While both the absorption and scattering coefficients decreased with altitude, their vertical structure differed significantly. Consequently, the derived SSA, with a surface value of 0.94, decreased with altitude, illustrating increasing relative dominance of aerosol absorption at higher altitudes. Altitude profile of SSA, when examined in conjunction with that of hemispheric backscatter fraction, revealed that the continental influence on the aerosol properties was higher at higher altitude, rather than the effect of marine environment. During an east–west transect across the peninsular India at an altitude of ~2500 m (free troposphere), it was found that the aerosol scattering coefficients remained nearly the same over both east and west coasts.  相似文献   

19.
This study is aimed at investigating the vertical velocity profile of flow passing over a vegetal area by an analytical approach. The soil ground is considered as pervious and thus non-zero velocity at the ground surface can be estimated. The soil and vegetation layers are regarded as homogeneous and isotropic porous media. Therefore the solution of the flow can be obtained by applying the theory of turbulent flow and Biot’s theory of poroelasticity after dividing the flow field into three layers: homogenous water, vegetation and pervious soil. The velocity distribution is compared with the experimental data of [Rowiński PM, Kubrak J. A mixing-length model for predicting vertical velocity distribution on flows through emergent vegetation. J Hydrol Sci 2002;47(6):893–904] to show its validity. In addition, five dimensionless parameters denoting the variation of slope, permeability of soil, Reynolds stress, density of vegetation, and relative height of vegetation are proposed to reveal their effects on the surface water flow. The analytical solutions of flow velocity can also be simplified into simpler expressions to describe the flow passing over a non-vegetated area.  相似文献   

20.
X. Qie  S. Soula  S. Chauzy 《Annales Geophysicae》1994,12(12):1218-1228
A numerical model called PICASSO [Production d’Ions Corona Au Sol Sous Orage (French) and Production of Corona Ions at the Ground Beneath Thundercloud (English)], previously designed, is used to describe the evolution of the principal electrical parameters below a thunderstorm, taking into account the major part played by corona ions. In order to improve the model restitution of a real situation, various improvements are performed: an initial vertical distribution of aerosol particles is introduced instead of the previously used uniform concentration; time and space calculation steps are adjusted according to the electric field variation rate; the upper boundary condition is improved; and the coefficients of ion attachment are reconsidered with an exhaustive bibliographic study. The influence of the ion attachment on aerosol particles, on the electric field and charge density aloft, is studied by using three different initial aerosol particle concentrations at ground level and two types of initial vertical distributions: uniform and non-uniform. The comparison between field data and model results leads to adjust the initial aerosol particle concentration over the experimental site at the value of 5000 cm−3 which appears to be highly realistic. The evolutions of the electric field and of the charge density at altitude are greatly influenced by the aerosol concentration. On the contrary, the surface intrinsic field, defined as the electric field that would exist underneath a thundercloud if there were no local charges, is weakly affected when the model is forced by the surface field. A good correlation appears between the success in the triggered lightning attempts and this intrinsic field evaluation. Therefore, when only the surface field is available, the model can be used in a triggered lightning experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号