首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Data assimilation combines atmospheric measurements with knowledge of atmospheric behavior as codified in computer models, thus producing a “best” estimate of current conditions that is consistent with both information sources. The four major challenges in data assimilation are: (1) to generate an initial state for a computer forecast that has the same mass-wind balance as the assimilating model, (2) to deal with the common problem of highly non-uniform distribution of observations, (3) to exploit the value of proxy observations (of parameters that are not carried explicitly in the model), and (4) to determine the statistical error properties of observing systems and numerical model alike so as to give each information source the proper weight. Variational data assimilation is practiced at major meteorological centers around the world. It is based upon multivariate linear regression, dating back to Gauss, and variational calculus. At the heart of the method is the minimization of a cost function, which guarantees that the analyzed fields will closely resemble both the background field (a short forecast containing a priori information about the atmospheric state) and current observations. The size of the errors in the background and the observations (the latter, arising from measurement and non-representativeness) determine how close the analysis is to each basic source of information. Three-dimensional variational (3DVAR) assimilation provides a logical framework for incorporating the error information (in the form of variances and spatial covariances) and deals directly with the problem of proxy observations. 4DVAR assimilation is an extension of 3DVAR assimilation that includes the time dimension; it attempts to find an evolution of model states that most closely matches observations taken over a time interval measured in hours. Both 3DVAR and, especially, 4DVAR assimilation require very large computing resources. Researchers are trying to find more efficient numerical solutions to these problems. Variational assimilation is applicable in the upper atmosphere, but practical implementation demands accurate modeling of the physical processes that occur at high altitudes and multiple sources of observations.  相似文献   

2.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

3.
In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72 h predictions, respectively, for the two cases using assimilation of all observations. Simulated rainfall estimates indicate that while the assimilation of scatterometer wind data improves the location of the rainfall, the assimilation of MODIS profiles produces a realistic pattern and amount of rainfall, close to the observational estimates.  相似文献   

4.
Least squares migration uses the assumption that, if we have an operator that can create data from a reflectivity function, the optimal image will predict the actual recorded data with minimum square error. For this assumption to be true, it is also required that: (a) the prediction operator must be error-free, (b) model elements not seen by the operator should be constrained by other means and (c) data weakly predicted by the operator should make limited contribution to the solution. Under these conditions, least squares migration has the advantage over simple migration of being able to remove interference between different model components. Least squares migration does that by de-convolving or inverting the so-called Hessian operator. The Hessian is the cascade of forward modelling and migration; for each image point, it computes the effects of interference from other image points (point-spread function) given the actual recording geometry and the subsurface velocity model. Because the Hessian contains illumination information (along its diagonal), and information about the model cross-correlation produced by non-orthogonality of basis functions, its inversion produces illumination compensation and increases resolution. In addition, sampling deficiencies in the recording geometry map to the Hessian (both diagonal and non-diagonal elements), so least squares migration has the potential to remove sampling artefacts as well. These (illumination compensation, resolution and mitigating recording deficiencies) are the three main goals of least squares migration, although the first one can be achieved by cheaper techniques. To invert the Hessian, least squares migration relies on the residual errors during iterations. Iterative algorithms, like conjugate gradient and others, use the residuals to calculate the direction and amplitudes (gradient and step size) of the necessary corrections to the reflectivity function or model. Failure of conditions (a), (b) or (c) leads the inversion to calculate incorrect model updates, which translate to noise in the final image. In this paper, we will discuss these conditions for Kirchhoff migration and reverse time migration.  相似文献   

5.
Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system’s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme.  相似文献   

6.
Schroth MH  Istok JD 《Ground water》2006,44(2):275-283
Push-pull tests (PPTs) have been successfully employed to quantify various microbially mediated processes in the subsurface. Current models for determining first-order rate coefficients (k) from PPTs assume complete and instantaneous mixing of injected test solution in the portion of the aquifer investigated by the test, i.e., the system is treated like a well-mixed reactor. Here we present two alternative models to estimate k that are based on different mixing assumptions, i.e., plug-flow and variably mixed reactor models. Rate coefficients estimated by the models were compared using a sensitivity analysis and numerical simulations of PPTs. Results indicated that all models yielded reasonably accurate k estimates (errors < 13%), while best accuracy (errors < 1%) was obtained using the variably mixed reactor model. The well-mixed reactor model generally overestimated true (simulation input) k values, whereas true k values were consistently underestimated by the plug-flow reactor model. However, estimates of k obtained with the latter models bracketed true k values in all cases. As the variably mixed reactor model is more difficult to apply, we suggest using the well-mixed and plug-flow reactor models to obtain intervals for k estimates that will encompass true k values with high certainty. In an example application, we used all models to reanalyze a published PPT data set to obtain k estimates for nitrate consumption in a petroleum-contaminated aquifer. Similar results were obtained for all three models (relative differences < 10% between k estimates), indicating that all three models are robust tools for estimating k values from PPT experimental data.  相似文献   

7.
With well-determined hydraulic parameters in a hydrologic model, a traditional data assimilation method (such as the Kalman filter and its extensions) can be used to retrieve root zone soil moisture under uncertain initial state variables (e.g., initial soil moisture content) and good simulated results can be achieved. However, when the key soil hydraulic parameters are incorrect, the error is non-Gaussian, as the Kalman filter will produce a persistent bias in its predictions. In this paper, we propose a method coupling optimal parameters and extended Kalman filter data assimilation (OP-EKF) by combining optimal parameter estimation, the extended Kalman filter (EKF) assimilation method, a particle swarm optimization (PSO) algorithm, and Richards’ equation. We examine the accuracy of estimating root zone soil moisture through the optimal parameters and extended Kalman filter data assimilation method by using observed in situ data at the Meiling experimental station, China. Results indicate that merely using EKF for assimilating surface soil moisture content to obtain soil moisture content in the root zone will produce a persistent bias between simulated and observed values. Using the OP-EKF assimilation method, estimates were clearly improved. If the soil profile is heterogeneous, soil moisture retrieval is accurate in the 0-50 cm soil profile and is inaccurate at 100 cm depth. Results indicate that the method is useful for retrieving root zone soil moisture over large areas and long timescales even when available soil moisture data are limited to the surface layer, and soil moisture content are uncertain and soil hydraulic parameters are incorrect.  相似文献   

8.
Sea surface temperature (SST) from a near real-time data set produced from satellites data has been assimilated into a coupled ice–ocean forecasting model (Canadian East Coast Ocean Model) using an efficient data assimilation method. The method is based on an optimal interpolation scheme by which SST is melded into the model through the adjustment of surface heat flux. The magnitude and space–time variation of the adjustment depend on the depth of heat diffusion into the water column in response to changes in surface flux, the correlation time scale of the data, and model and data errors. The diffusion depth is scaled by the eddy diffusivity for temperature. The ratio of the model and data errors is treated as an adjustable parameter. To evaluate the quality of the assimilation, the results from the model with and without assimilation are compared to independent ship data from the Atlantic Zone Monitoring Program and the World Ocean Circulation Experiment. It is shown that the assimilation has a significant impact on the modeled SST, reducing the root mean square difference (RMSD) between the model SST and the ship SST by 0.63°C or 37%. The RMSD of the assimilated SST is smaller than that of the satellite SST by 0.23°C. This suggests that model simulations or predictions with data assimilation can provide the best estimate of the true SST. A sensitivity study is performed to examine the change of the model RMSD with the adjustable parameter in the assimilation equation. The results show that there is an optimal value of the parameter and the model SST is not very sensitive to the parameter.  相似文献   

9.
In this paper, we propose the novel method of complex least squares adjustment(CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry(Pol In SAR) data. CLSA basically estimates both volume-only coherence and ground phase directly without assuming that the ground-to-volume amplitude radio of a particular polarization channel(e.g., HV) is less than ?10 d B, as in the three-stage method. In addition, CLSA can effectively limit errors in interferometric complex coherence, which may translate directly into erroneous ground-phase and volume-only coherence estimations. The proposed CLSA method is validated with Bio SAR2008 P-band E-SAR and L-band SIR-C Pol In SAR data. Its results are then compared with those of the traditional three-stage method and with external data. It implies that the CLSA method is much more robust than the three-stage method.  相似文献   

10.
When gravimetric data observations have outliers, using standard least squares (LS) estimation will likely give poor accuracies and unreliable parameter estimates. One of the typical approaches to overcome this problem consists of using the robust estimation techniques. In this paper, we modified the robust estimator of Gervini and Yohai (2002) called REWLSE (Robust and Efficient Weighted Least Squares Estimator), which combines simultaneously high statistical efficiency and high breakdown point by replacing the weight function by a new weight function. This method allows reducing the outlier impacts and makes more use of the information provided by the data. In order to adapt this technique to the relative gravity data, weights are computed using the empirical distribution of the residuals obtained initially by the LTS (Least Trimmed Squares) estimator and by minimizing the mean distances relatively to the LS-estimator without outliers. The robustness of the initial estimator is maintained by adapted cut-off values as suggested by the REWLSE method which allows also a reasonable statistical efficiency. Hereafter we give the advantage and the pertinence of REWLSE procedure on real and semi-simulated gravity data by comparing it with conventional LS and other robust approaches like M- and MM-estimators.  相似文献   

11.
We introduce a new ensemble-based Kalman filter approach to assimilate GRACE satellite gravity data into the WaterGAP Global Hydrology Model. The approach (1) enables the use of the spatial resolution provided by GRACE by including the satellite observations as a gridded data product, (2) accounts for the complex spatial GRACE error correlation pattern by rigorous error propagation from the monthly GRACE solutions, and (3) allows us to integrate model parameter calibration and data assimilation within a unified framework. We investigate the formal contribution of GRACE observations to the Kalman filter update by analysis of the Kalman gain matrix. We then present first model runs, calibrated via data assimilation, for two different experiments: the first one assimilates GRACE basin averages of total water storage and the second one introduces gridded GRACE data at \(5^\circ\) resolution into the assimilation. We finally validate the assimilated model by running it in free mode (i.e., without adding any further GRACE information) for a period of 3 years following the assimilation phase and comparing the results to the GRACE observations available for this period.  相似文献   

12.
Introduced almost 40 years ago, the method of optimal interpolation (OI) has been successfully used in various forms for data analysis in meteorology and oceanography. At the same time upper-atmospheric applications of OI and other techniques based on optimal estimation have remained relatively limited. The theory of OI and related methods is reviewed. Properties of optimal estimation relevant to typical problems of data analysis in the upper atmosphere are highlighted. As a specific example, a simple one-dimensional scheme of OI in time is considered. The scheme is devised to address an important problem of the upper-atmospheric data analysis: extraction of periodic (tidal) components from observations covering a fraction of a day. Possible generalizations of the scheme are also briefly discussed. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

13.
Three choices of control variables for meteorological variational analysis (3DVAR or 4DVAR) are associated with horizontal wind: (1) streamfunction and velocity potential, (2) eastward and northward velocity, and (3) vorticity and divergence. This study shows theoretical and numerical differences of these variables in practical 3DVAR data assimilation through statistical analysis and numerical experiments. This paper demonstrates that (a) streamfunction and velocity potential could potentially introduce analysis errors; (b) A 3DVAR using velocity or vorticity and divergence provides a natural scale dependent influence radius in addition to the covariance; (c) for a regional analysis, streamfunction and velocity potential are retrieved from the background velocity field with Neumann boundary condition. Improper boundary conditions could result in further analysis errors; (d) a variational data assimilation or an inverse problem using derivatives as control variables yields smoother analyses, for example, a 3DVAR using vorticity and divergence as controls yields smoother wind analyses than those analyses obtained by a 3DVAR using either velocity or streamfunction/velocity potential as control variables; and (e) statistical errors of higher order derivatives of variables are more independent, e.g., the statistical correlation between U and V is smaller than the one between streamfunction and velocity potential, and thus the variables in higher derivatives are more appropriate for a variational system when a cross-correlation between variables is neglected for efficiency or other reasons. In summary, eastward and northward velocity, or vorticity and divergence are preferable control variables for variational systems and the former is more attractive because of its numerical efficiency. Numerical experiments are presented using analytic functions and real atmospheric observations.  相似文献   

14.
This study has applied evolutionary algorithm to address the data assimilation problem in a distributed hydrological model. The evolutionary data assimilation (EDA) method uses multi-objective evolutionary strategy to continuously evolve ensemble of model states and parameter sets where it adaptively determines the model error and the penalty function for different assimilation time steps. The assimilation was determined by applying the penalty function to merge background information (i.e., model forecast) with perturbed observation data. The assimilation was based on updated estimates of the model state and its parameterizations, and was complemented by a continuous evolution of competitive solutions.The EDA was illustrated in an integrated assimilation approach to estimate model state using soil moisture, which in turn was incorporated into the soil and water assessment tool (SWAT) to assimilate streamflow. Soil moisture was independently assimilated to allow estimation of its model error, where the estimated model state was integrated into SWAT to determine background streamflow information before they are merged with perturbed observation data. Application of the EDA in Spencer Creek watershed in southern Ontario, Canada generates a time series of soil moisture and streamflow. Evaluation of soil moisture and streamflow assimilation results demonstrates the capability of the EDA to simultaneously estimate model state and parameterizations for real-time forecasting operations. The results show improvement in both streamflow and soil moisture estimates when compared to open-loop simulation, and a close matching between the background and the assimilation illustrates the forecasting performance of the EDA approach.  相似文献   

15.
Abstract

The water cloud model is used to account for the effect of vegetation water content on radar backscatter data. The model generally comprises two parameters that characterize the vegetated terrain, A and B, and two bare soil parameters, C and D. In the present study, parameters A and B were estimated using a genetic algorithm (GA) optimization technique and compared with estimates obtained by the sequential unconstrained minimization technique (SUMT) from measured backscatter data. The parameter estimation was formulated as a least squares optimization problem by minimizing the deviations between the backscatter coefficients retrieved from the ENVISAT ASAR image and those predicted by the water cloud model. The bias induced by three different objective functions was statistically analysed by generating synthetic backscatter data. It was observed that, when the backscatter coefficient data contain no errors, the objective functions do not induce any bias in the parameter estimation and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the cases considered, the objective function based on the sum of squares of normalized deviations with respect to the computed backscatter coefficient resulted in the best possible estimates. A comparison of the GA technique with the SUMT was undertaken in estimating the water cloud model parameters. For the case considered, the GA technique performed better than the SUMT in parameter estimation, where the root mean squared error obtained from the GA was about half of that obtained by the SUMT.

Editor D. Koutsoyiannis; Associate editor L. See

Citation Kumar, K., Hari Prasad, K.S. and Arora, M.K., 2012. Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrological Sciences Journal, 57 (4), 776–789.  相似文献   

16.
Snow interception is a crucial hydrological process in cold regions needleleaf forests, but is rarely measured directly. Indirect estimates of snow interception can be made by measuring the difference in the increase in snow accumulation between the forest floor and a nearby clearing over the course of a storm. Pairs of automatic weather stations with acoustic snow depth sensors provide an opportunity to estimate this, if snow density can be estimated reliably. Three approaches for estimating fresh snow density were investigated: weighted post-storm density increments from the physically based Snobal model, fresh snow density estimated empirically from air temperature (Hedstrom, N. R., et al. [1998]. Hydrological Processes, 12, 1611–1625), and fresh snow density estimated empirically from air temperature and wind speed (Jordan, R. E., et al. [1999]. Journal of Geophysical Research, 104, 7785–7806). Automated snow depth observations from adjacent forest and clearing sites and estimated snow densities were used to determine snowstorm snow interception in a subalpine forest in the Canadian Rockies, Alberta, Canada. Then the estimated snow interception and measured interception information from a weighed, suspended tree and a time-lapse camera were assimilated into a model, which was created using the Cold Regions Hydrological Modelling platform (CRHM), using Ensemble Kalman Filter or a simple rule-based direct insertion method. Interception determined using density estimates from the Hedstrom-Pomeroy fresh snow density equation agreed best with observations. Assimilating snow interception information from automatic snow depth measurements improved modelled snow interception timing by 7% and magnitude by 13%, compared to an open loop simulation driven by a numerical weather model; its accuracy was close to that simulated using locally observed meteorological data. Assimilation of tree-measured snow interception improved the snow interception simulation timing and magnitude by 18 and 19%, respectively. Time-lapse camera snow interception information assimilation improved the snow interception simulation timing by 32% and magnitude by 7%. The benefits of assimilation were greatly influenced by assimilation frequency and quality of the forcing data.  相似文献   

17.
Four existing sea surface temperature (SST) assimilation schemes are evaluated in terms of their performances in assimilating the advanced very high resolution radiometer pathfinder best SST data in the South China Sea using the Princeton Ocean Model. Schemes 1 and 2 project SST directly to subsurface according to model-based correlations between SST and subsurface temperature. The difference between these two schemes is related to the order of vertical projection and horizontal optimal interpolation (OI). In Scheme 1, the spatially non-uniform SST observations are first projected to subsurface levels, followed by horizontal OI at each level. While in Scheme 2, the remotely sensed SSTs are first optimally interpolated to all grid points at the surface, followed by projecting gridded SSTs to subsurface levels. Scheme 3 assumes that the mixed layer is well mixed and has a uniform temperature vertically. In Scheme 4, SST is propagated to subsurface levels using a linear relationship of temperature between any two neighboring depths (Scheme 4a) or between surface and subsurface (Scheme 4b), which is derived by empirical orthogonal function (EOF) technique. To verify the results of the four schemes, the authors use the hydrographic data from two cruises during the South China Sea Monsoon Experiment in April and June 1998. It was shown that all four schemes could improve the SST field by reducing about 50% of the root mean square errors (RMSEs). All but Scheme 3 can improve model thermocline structure that is too diffused otherwise, though the RMSEs increase in the thermocline, especially for Scheme 2 when the model has opposite bias between upper layers and lower layers. Scheme 3 fails in the subsurface depth by increasing the thermocline depth, especially when there is a cold model bias. Projecting SST downward by EOF technique can deepen the depth of assimilation especially in Scheme 4a. Both Schemes 4a and b can correct the bias in the mixed layer and do not change the vertical thermal structure.  相似文献   

18.
It is a common fact that the majority of today's wave assimilation platforms have a limited, in time, ability of affecting the final wave prediction, especially that of long-period forecasting systems. This is mainly due to the fact that after “closing” the assimilation window, i.e., the time that the available observations are assimilated into the wave model, the latter continues to run without any external information. Therefore, if a systematic divergence from the observations occurs, only a limited portion of the forecasting period will be improved. A way of dealing with this drawback is proposed in this study: A combination of two different statistical tools—Kolmogorov–Zurbenko and Kalman filters—is employed so as to eliminate any systematic error of (a first run of) the wave model results. Then, the obtained forecasts are used as artificial observations that can be assimilated to a follow-up model simulation inside the forecasting period. The method was successfully applied to an open sea area (Pacific Ocean) for significant wave height forecasts using the wave model WAM and six different buoys as observational stations. The results were encouraging and led to the extension of the assimilation impact to the entire forecasting period as well as to a significant reduction of the forecast bias.  相似文献   

19.
Abstract

Unconfined aquifer parameters, viz. transmissivity, storage coefficient, specific yield and delay index from a pumping test are estimated using the genetic algorithm optimization (GA) technique. The parameter estimation problem is formulated as a least-squares optimization, in which the parameters are optimized by minimizing the deviations between the field-observed and the model-predicted time–drawdown data. Boulton's convolution integral for the determination of drawdown is coupled with the GA optimization technique. The bias induced by three different objective functions: (a) the sum of squares of absolute deviations between the observed and computed drawdown; (b) the sum of squares of normalized deviations with respect to the observed drawdown; and (c) the sum of squares of normalized deviations with respect to the computed drawdown, is statistically analysed. It is observed that, when the time–drawdown data contain no errors, the objective functions do not induce any bias in the parameter estimates and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the case considered, defining the objective function as the sum of the squares of absolute deviations between the observed and simulated drawdowns resulted in the best possible estimates. A comparison of the GA technique with the curve-matching procedure and a conventional optimization technique, such as the sequential unconstrained minimization technique (SUMT), is made in estimating the aquifer parameters from a reported field pumping test in an unconfined aquifer. For the case considered, the GA technique performed better than the other two techniques in parameter estimation, with the sum-of-squares errors obtained from the GA about one fourth of those obtained by the curve matching procedure, and about half of those obtained by SUMT.

Citation Rajesh, M., Kashyap, D. & Hari Prasad, K. S. (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrol. Sci. J. 55(3), 403–413.  相似文献   

20.
Estimation of ocean circulation is investigated via assimilation of satellite measurements of the dynamic ocean topography (DOT) into the global finite-element ocean model (FEOM). The DOT was obtained by means of a geodetic approach from carefully cross-calibrated multi-mission altimeter data and GRACE gravity fields. The spectral consistency was achieved by consistently filtering both, the sea surface and the geoid. The filter length is determined by the spatial resolution of the gravity field and corresponds to approximately 241 km half width for the GRACE-based gravity field model ITG-Grace03s.The assimilation of the geodetic DOT was performed by employing a local singular evolutive interpolated Kalman (SEIK) filter in combination with the method of weighting of observations. It is shown that this approach leads to a successful assimilation technique that reduced the RMS difference between the model and the data from 16 cm to 5 cm during one year of assimilation. The ocean model returns an optimized mean dynamic ocean topography. The effects of assimilation on transport estimates across several hydrographic World Ocean Circulation Experiment (WOCE) sections show improvements compared to the FEOM run without data assimilation. As a result of the assimilation, DOT estimates are available in the polar or coastal regions where the geodetic estimates from satellite data alone are not adequate. Furthermore, more realistic features of the ocean can be seen in these areas compared to those obtained using the filtered data fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号