首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Applying spectral analysis to the Atlantic and Pacific hurricane time series, we found periodicities that coincide with the main sunspot and magnetic solar cycles. To assess the possibility that these periodicities could be associated with solar activity, we obtain correlations between hurricane occurrence and several solar activity-related phenomena, such as the total solar irradiance, the cosmic ray flux and the Dst index of geomagnetic activity. Our results indicate that the highest significant correlations are found between the Atlantic and Pacific hurricanes and the Dst index. Most importantly, both oceans present the highest hurricane–Dst correlations during the ascending part of odd solar cycles and the descending phase of even solar cycles. This shows not only the existence of a 22 yr cycle but also the nature of such periodicity. Furthermore, we found that the Atlantic hurricanes behave differently from the Pacific hurricanes in relation to the solar activity-related disturbances considered.  相似文献   

2.
The linkage between multi-decadal climate variability and activity of the sun has been long debated based upon observational evidence from a large number of instrumental and proxy records. It is difficult to evaluate the exact role of each of solar parameters on climate change since instrumentally measured solar related parameters such as Total Solar irradiance (TSI), Ultra Violet (UV), solar wind and Galactic Cosmic Rays (GCRs) fluxes are more or less synchronized and only extend back for several decades. Here we report tree-ring carbon-14 based record of 11-year/22-year solar cycles during the Maunder Minimum (17th century) and the early Medieval Maximum Period (9–10th century) to reconstruct the state of the sun and the flux of incoming GCRs. The result strongly indicates that the influence of solar cycles on climate is persistent beyond the period after instrumental observations were initiated. We find that the actual lengths of solar cycles vary depending on the status of long-term solar activity, and that periodicity of the surface air temperatures are also changing synchronously. Temperature variations over the 22-year cycles seem, in general, to be more significant than those associated with the 11-year cycles and in particular around the grand solar minima such as the Maunder Minimum (1645–1715 AD). The polarity dependence of cooling events found in this study suggests that the GCRs can not be excluded from the possible drivers of decadal to multi-decadal climate change.  相似文献   

3.
Geomagnetism and Aeronomy - The results of analysis of variations in the total solar irradiance in the 17–24th solar activity cycles and their relation to the climate global warming are...  相似文献   

4.
The effects of hysteresis, which is a manifestation of ambiguous relationships between different solar activity indices during the rising and declining phases of solar cycles, are analyzed. The paper addresses the indices characterizing radiation from the solar photosphere, chromosphere, and corona, and the ionospheric indices. The 21st, 22nd, and 23rd solar cycles, which significantly differ from each other in amplitude, exhibit different extents of hysteresis.  相似文献   

5.
Solar activity is evident both in the equatorial activity centres and in the polar magnetic field variations. The total solar irradiance variation is due to the former component. During the extraordinarily long minimum of activity between sunspot cycles 23 and 24, the variations related to the equatorial field components reached their minimum values in the first half of 2008, while those related to the polar field variations had their extreme values rather at the end of 2009 and the first half of 2010. The explanation of this delay is another challenge for dynamo theories. The role of the open solar flux has so far been grossly underestimated in discussions of Sun-climate relations. The gradual increase in the average terrestrial ground temperature since 1610 is related both to the equatorial and polar field variations. The main component (0.077?K/century) is due to the variation of the total solar irradiance. The second component (0.040?K/century) waits for an explanation. The smoothed residual increase, presumably antropogenic, obtained after subtraction of the known components from the total increase was 0.31?K in 1999.  相似文献   

6.
月表有效太阳辐照度实时模型   总被引:2,自引:0,他引:2       下载免费PDF全文
月表太阳辐射是深入研究月表温度分布的关键问题之一. 本文根据月表有效太阳辐照度与太阳常数、太阳辐射入射角以及日月距离之间的关系,建立月表有效太阳辐照度的实时模型. 该模型在1950~2050年的100年内的理论误差百分比小于0.28%, 相对前人提出的模型在精度上有了很大程度的提高,能较为真实地反映月表有效太阳辐照度随时间的变化规律. 计算结果表明2007年月表太阳辐照度的年变化范围在1321.5~1416.6 W·m-2之间,平均为1368.0 W·m-2. 通过对月表太阳辐射入射角计算结果的分析,证实了月球的两极可能存在极昼极夜.  相似文献   

7.
Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar cycle time scales. Here, we compare solar irradiance in the 220–240?nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.  相似文献   

8.
The double-sunspot-cycle variation in terrestrial magnetic activity has been well known for about 30 years. In 1990 we examined and compared the low-solar-activity (LSA) part of two consecutive cycles and predicted from this database and from published results the existence of a double-sunspot-cycle variation in total electron content (TEC) of the ionosphere too. This is restricted to noontime when the semi-annual component is well developed. Since 1995 we have had enough data for the statistical processing for high-solar-activity (HSA) conditions of two successive solar cycles. The results confirm the LSA findings. The annual variation of TEC shows a change from an autumn maximum in cycle 21 to a spring maximum during the next solar cycle. Similar to the aa indices for geomagnetic activity the TEC data show a phase change in the 1-year component of the Fourier transform of the annual variation. Additionally we found the same behaviour in the F-layer peak electron density (Nmax) over four solar cycles. This indicates that there exists a double-sunspot-cycle variation in the F-layer ionization over Europe too. It is very likely coupled with the 22-year cycle in geomagnetic activity.  相似文献   

9.
Total Solar Irradiance Observations   总被引:1,自引:0,他引:1  
The record of total solar irradiance (TSI) during the past 35?years has overlapping observations from space which can be merged to a composite, and three are available, namely the PMOD, the ACRIM and the IRMB composites. There are important differences between them, which are discussed in detail in order to find the best representation of solar variability during the last three cycles, for the following discussions of solar irradiance variability. Moreover, the absolute value of TSI from TIM on SORCE is 1,361?Wm?2, substantially lower than the value 1,365?Wm?2, which was observed by the classical radiometers. New results from specific experiments are now available, which are discussed in order to define the value to be used in, e.g., climate models. The most important issue regarding the recent TSI records is the low value observed during the minimum in 2009, which is 25% of a typical cycle amplitude lower than the value in 1996. The validity of this low value has been confirmed by comparing all existing TSI observations during cycle 23. On the other hand, activity indices, such as the sunspot number, the 10.7-cm radio flux (F10.7), the CaII and MgII indices and also the Ly-α irradiance or the frequency changes in low-order p modes, show a much smaller decreases relative to their respective typical cycle amplitude. It is most likely that an increasing contrast of the facular and network elements with decreasing magnetic field is responsible for this discrepancy. The value of TSI at minima is correlated with the open magnetic field of the Sun, B R,?at minima. Using B R at minima, interpolated linearly in between as a fourth component of a proxy model based on the photometric sunspot index and on the MgII index improves the explanation of the variance of TSI over the full period of the last three solar cycles to 84.7%. Results from other models are also discussed.  相似文献   

10.
The ground track of the annular eclipse of 3 October 2005 crossed the Iberian Peninsula. The main objective of this work was to analyze the variability of the solar irradiance and the total ozone column during the course of this event at El Arenosillo (Southwestern Spain). For achieving this goal, two Kipp & Zonen broadband radiometers (one for measuring total solar irradiance and other for measuring ultraviolet erythemal solar irradiance), one NILU-UV multi-band instrument and one Brewer spectroradiometer were used in this work. Total irradiance (310–2800 nm), and ultraviolet erythemal radiation (UVER) were recorded at a high frequency of 5 s, showing a strong reduction (higher than 80%) of the irradiance at the maximum solar obscuration which was of 79.6%. The irradiance decrease during the course of the eclipse was positively correlated with the percentage of eclipse obscuration, showing a very high agreement (R2~0.99). The irradiance recorded at selected wavelengths from the NILU-UV instrument shows a more pronounced decrease in the UV irradiance at the lower wavelengths during the solar eclipse. Finally, the evolution of the total ozone column (TOC) derived from Brewer and NILU instruments during the eclipse presented an opposite behavior: while the Brewer derived TOC values increase about 15 DU, the NILU derived TOC values decrease about 11 DU. This opposite behavior is mainly related to an artifact in the spectral irradiances recorded by the two instruments.  相似文献   

11.
恰在水面下辐照度比变化与吸收系数、散射系数和太阳天顶角存在着密切的关系,而太阳天顶角对太湖恰在水面下辐照度比的定量影响程度尚不明确.为此,本文基于2010年5月太湖27个样点的水体光学参数和理论数值模拟,对太湖水体的情况进行研究.理论数值模拟结果表明:当太阳天顶角分别在0°~25°和70°~89°区间内变化时,对恰在水面下辐照度比增幅影响较小,增幅相差不到10%;而当太阳天顶角在30°~70°之间时,对辐照度比增幅影响很大,增幅为13.13%~52.19%.同时,利用实测数据对理论结果进行线性相关验证表明,此数值研究整体上符合太湖的实际情况.因此,对水体光学特性以及光对水生生态系统驱动作用研究的时候,应充分考虑太阳天顶角的影响.  相似文献   

12.
太阳活动对地球的影响是人们关心的重要研究课题。太阳黑子相对数作为描述太阳活动的一个参量,虽然不如射电流量密度等参量具有明确的物理意义,但是由于它有较长的观测历史以及在统计上可较好地反映太阳活动的变化,因此在较长期的太阳活动预报等工作中仍是个常用的参量,为有关部门所使用。 将上一个太阳周即第21周的种种预报极值与实际极值165.3比较,可知:一般说  相似文献   

13.
The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSBUV data accurately represent the absolute solar UV irradiance between 200–405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170–400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.  相似文献   

14.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

15.
Analysis of the time series into trigonometric series allows the investigation of cosmic-ray (CR) intensity variations in a range of periodicities from a few days to 1 year. By this technique the amplitude and the phase of all observed fluctuations can be given. For this purpose, daily CR intensity values recorded at Climax Neutron Monitor station for the time intervals 1979–1982 and 1989–1991, which correspond to the epochs of maximum activity for solar cycles 21 and 22, respectively, have been studied. The data analysis revealed the occurrence of new periodicities, common or not, in the two solar maxima. A search of our results was done by a power spectral analysis determining independently possible systematic periodic or quasi-periodic variations. Based on the fact that during these maxima the CR intensity tracks the solar flare index better than the sunspot number, the same analysis was performed on these data, which are equivalent to the total energy emitted by the solar flares. Both analyses result in periodicities with different probability of occurrence in different epochs. Occurrence at peaks of 70, 56, 35, 27, 21 and 14- days were observed in all time series, while the periods of 140–154 and 105 days are reported only in the 21st solar maximum and are of particular importance. All of the short-term periods except of those at 27 and 154-days are recorded for first time in CR data, but they had already been observed in the solar activity parameters. Moreover, each parameter studied here has a very different power spectrum distribution in periods larger than 154 days. The possible origin of the observed variations in terms of the CR interaction in the upper atmosphere and the solar cavity dynamics is also discussed here.  相似文献   

16.
This article studies long-period variations in the Earth’s upper atmosphere density over several solar activity cycles, using long-term data on the evolution of motion of three artificial satellites (Intercosmos-19, Meteor-1-2, and Cosmos-1154) in orbits at heights of 400–1000 km. The time interval when the satellites were in the orbits covered three solar activity cycles (partly the 21st, completely the 22nd, and partly the 23rd). It is found that the variations in the average density of the upper atmosphere at heights of 400–600 km in the 1980–2000 period were governed by the changes in the solar activity level.  相似文献   

17.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

18.
We compare changes in the solar global magnetic field (GMF) given by the distribution of magnetic fields on the source surface and spot activity characterized by Wolf numbers, the number of spots, and their area reflecting the dynamics of local magnetic fields of active regions during cycles 21 to 24 (1976–2015). The results indicate that the changes in the GMF and spot activity have certain differences, both in different cycles generally and in the phases of growth, maximum, and decline in each individual cycle. The maximum and minimum correlations between the GMF and spot activity are observed in cycles 22 and 24, respectively. The maximum correlation is reached in growth phases (cycles 21, 22, and 24) and in the phase of decline (cycle 23), which can be associated with the fact that the phase of decline in cycle 23 is anomalously extended. Almost no correlation between the GMF and spot activity can be found at the phases of the maximum and early beginning of decline in all cycles. This can be associated with structural reorganization and sign change in the GMF.  相似文献   

19.
By applying multitaper methods and Pearson test on the surface air temperature and flare index used as a proxy data for possible solar sources of climate-forcing, we investigated the signature of these variables on middle and high latitudes of the Atlantic–Eurasian region (Turkey, Finland, Romania, Ukraine, Cyprus, Israel, Lithuania, and European part of Russia). We considered the temperature and flare index data for the period ranging from January 1975 to the end of December 2005, which covers almost three solar cycles, 21st, 22nd, and 23rd.We found significant correlations between solar activity and surface air temperature over the 50–60° and 60–70° zones for cycle 22, and for cycle 23, over the 30–40°, 40–50°, and 50–60° zones.The most pronounced power peaks for surface air temperature found by multitaper method are around 1.2, 1.7, and 2.5 years which were reported earlier for some solar activity indicators. These results support the suggestion that there is signature of solar activity effect on surface air temperature of mid-latitudes.  相似文献   

20.
Using the annual number of geomagnetically quiet days (aa < 20 γ) for the year after the solar minimum, this precursor method predicts that the maximum sunspot number for cycle 23 will be 140 + 32, indicating that cycle 23 will be similar to cycles 21 and 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号