首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
黄土坡面径流侵蚀产沙动力过程模拟与研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过室内模拟冲刷试验系统研究了3°~30°坡度范围内坡面径流的侵蚀动力及产沙特征,分析了坡面径流能耗与径流侵蚀产沙之间的关系。结果表明,坡面径流平均流速随坡度和流量的增加而增大,流速与坡度和流量之间存在指数函数关系,坡度对流速的影响大于流量。在3°~21°坡度范围内,坡面径流单宽能耗随坡度的增加而增加,当坡度超过21°时,径流能耗随坡度的增加而降低。坡度对侵蚀产沙的影响也有类似的现象,在3°~21°坡度范围内,坡面径流平均单宽输沙率随坡度的增加而增大,当坡度达到临界极值21°和24°后,坡面径流平均输沙率随坡度增加而减小;在整个试验坡度范围内,径流平均单宽输沙率随流量的增大而增大;流量对坡面径流平均单宽输沙率的影响大于坡度。坡面径流平均单宽输沙率和单宽径流能耗之间存在明显的线性关系,其临界单宽径流能耗随坡度的增加而增加,土壤可蚀性参数随坡度的变化在10.368~30.366的范围变化,试验的土壤可蚀性的平均值为14.61。  相似文献   

2.
含沙量对草地坡面径流泥沙沉积和水力特性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
通过室内模拟试验,在坡度为3°和9°、流量为20和60L/min条件下研究了不同浓度(0~350kg/m3)含沙水流流经草地的泥沙沉积过程及其水力学特性。结果表明,坡面泥沙沉积量随含沙量的增加而增大,3°时泥沙沉积率与含沙量呈正相关,而9°时沉积率与含沙量呈反势。坡度对泥沙沉积影响显著,而在相同坡度条件下,两种流量试验的泥沙沉积量无明显差异。相同坡面坡上部位流速小于坡下部位,且含沙量对坡面流速影响较小。在相同坡度和流量条件下,水流雷诺数随含沙量的增大而减小。3°时水流阻力系数和曼宁糙率均随含沙量的增加而增大,而9°时含沙量对阻力影响不明显,因此在土壤侵蚀较严重地区进行坡面水文过程演算时需考虑含沙量对缓坡糙率的影响。  相似文献   

3.
黄土坡面侵蚀特性研究对于铁路边坡及路基防护具有重要的意义。通过银西高铁董志塬段某路基护坡坡面冲刷试验,获得了不同冲刷历时、冲刷流量、坡度等条件下的坡面冲刷结果,并对坡面流水动力学特性、坡面产沙规律、坡面产沙机理进行了分析,得出以下结论:(1)坡顶和坡底比坡面中部更易受侵蚀;30°~60°斜坡在较小的冲刷强度下也能产生较明显的侵蚀沟,宜采取45°左右的多级矮坡来减弱侵蚀强度。(2)坡面流水动力学特性分析表明,试验工况水流主要处于过渡流区;平均流速与冲刷流量、坡度呈幂函数关系;达西阻力系数与冲刷流量、坡度呈负相关,且与雷诺数相关性较低。(3)平均含沙量随冲刷流量与坡度的增大而增大,随历时近似线性增加,约20 min以后,含沙量基本稳定,此过程为坡面沟道发展阶段。(4)坡面侵蚀产沙量与侵蚀切应力、有效水流功率都呈正相关,与前者近似呈线性增大关系,而与后者近似呈幂函数关系。  相似文献   

4.
坡面流层流区动力学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为完善坡面水流的基础理论研究,基于定床水槽试验,以甘油溶液为试验流体,采用超声波测量技术,进行了4种粗糙度、5种坡度和13种单宽流量条件下的组合试验,研究了坡面流层流区的动力学特性及滚波特征。研究结果表明:在雷诺数为8~160的范围内,流态指数在理论值0.33附近波动,且随粗糙度的增大呈现先增大后减小的变化趋势,在粗糙度为0.10 mm附近达到峰值;阻力系数受坡度和粗糙度影响显著,可较好地由坡度、粗糙度和雷诺数的关系式表示;随着雷诺数的增大,滚波波速和波峰均呈幂函数形式递增,滚波周期大小无明显变化;坡度的增大会使层流失稳临界单宽流量减小,粗糙度的增大会使临界弗劳德数的均值减小。  相似文献   

5.
坡沟系统坡面径流流态及水力学参数特征研究   总被引:18,自引:2,他引:16       下载免费PDF全文
利用变坡度坡沟系统概化模型和人工模拟降雨试验,定量分析了在60、90和130mm/h降雨强度下坡沟系统坡面径流流态及水力学参数特征。结果表明,上方汇水和降雨强度的增大使坡沟系统水流雷诺数和弗劳德数呈明显增大,水流流态由缓流演变为急流,坡面水流阻力系数明显减小,从而使坡沟侵蚀产沙量显著增大。  相似文献   

6.
模拟植被覆盖条件下坡面流水动力学特性   总被引:14,自引:0,他引:14       下载免费PDF全文
利用人工模拟植被试验,系统研究了6个坡度和10个流量、5种覆盖度条件下坡面流水力参数水力要素关系及阻力的变化特征,以期揭示坡面植被水流阻力的内在规律性.结果表明:流态指数随植被覆盖度的增加而显著增加,相同植被覆盖度下,试验坡度对其影响并不显著.各试验工况下,水流流态主要分布在"虚拟层流区"和过渡流区,未达到紊流区.随试验坡度的增加,水流流态由缓流向急流区域延伸,而随覆盖度的增加,流态向相反方向延伸.植被覆盖条件下坡面水流阻力与雷诺数的变化规律并非呈单调增加或者单调递减的趋势,而与植被覆盖度紧密相关,当植被覆盖度较低时,阻力系数随雷诺数的增加而减小,而覆盖度较高时,阻力系数随雷诺数增加呈线性增加的趋势.  相似文献   

7.
坡面流水力学参数对团聚体剥蚀程度的定量影响   总被引:7,自引:0,他引:7       下载免费PDF全文
土壤团聚体作为径流搬运过程中的基本结构单元,其在径流运移中的剥蚀破坏影响着坡面径流入渗状况、泥沙含量及地表侵蚀过程的强度。利用变坡试验水槽,在不同流量(0.4~1.2 L/s)和坡度(8.8%~46.6%)范围内,详细分析了流量、坡度、径流水深和阻力系数对鄂南两种典型母质发育红壤团聚体剥蚀破坏的定量影响。研究结果表明,流量和坡度对两种母质发育红壤团聚体的剥蚀影响都是极显著的,坡度对两种红壤团聚体的剥蚀破坏影响均大于流量;不同流量和坡度组合下的团聚体剥蚀破坏变化规律不同,利用流量和坡度的幂函数可以准确地预测团聚体剥蚀程度;在两种水力学参数之间,团聚体剥蚀程度随着径流水深的增加而降低,随着阻力系数的变大剥蚀程度增加。  相似文献   

8.
土壤侵蚀链内细沟浅沟切沟流动力机制研究   总被引:16,自引:0,他引:16       下载免费PDF全文
通过模拟降雨试验的方法,系统研究了细沟流流速与流量、水深与流量、流速与水深及阻力系数与雷诺数之间的关系,雨强与坡度对细沟流水力特性的影响,不同细沟流流型、流态及水动力要素作用下的侵蚀特点,并对浅沟与切沟流的水动力特性及侵蚀规律进行了初步探讨.研究结果对于揭示土壤侵蚀链内不同侵蚀方式下的水沙流动力学机制,以及土壤侵蚀演化规律具有重要意义.  相似文献   

9.
不同坡度草地含沙水流水力学特性及其拦沙机理   总被引:17,自引:5,他引:17       下载免费PDF全文
参照黄土区侵蚀降雨和坡面片蚀产沙特征,采用恒流泥沙输送装置模拟坡面上方来水来沙,探讨不同坡度草地含沙水流的水力学特性及其对上方来沙的拦蓄机理。结果表明,草地坡面的水流弗劳德数随坡度增大而增加,而阻力系数与坡度呈反势。按明渠水流的一般标准,不同坡度草地水流均为层状缓流。草地坡面拦沙效应随坡度增大而减小,且径流前期的减沙作用较后期更为显著。不同坡度草地坡面的出流泥沙平均直径和大颗粒(>10μm)泥沙含量均显著小于上方来沙,这说明草地的拦沙效应主要体现在对大粒径泥沙的拦蓄上。  相似文献   

10.
为深入揭示植被覆盖条件下坡面水流结构的内在规律,采用水槽模拟试验,系统研究了植被处于淹没及非淹没工况下淹没度对坡面流水动力学特性的影响。研究结果表明:坡度一定条件下,平均流速和雷诺数与淹没度均成正相关关系;柔性植被覆盖下,水流流型由缓流区过渡到急流区,综合阻力系数随淹没度的增加而减小,刚性植被覆盖条件下水流流型均处于缓流区;综合阻力系数呈单驼峰形式变化;峰值处淹没度为0.9,淹没度对相对摩阻流速的影响与其对阻力系数呈相反变化趋势,基于淹没度的阻力计算经验公式决定系数均达到0.97以上;由于淹没度对各水动力学参数的影响受制于坡度,在坡面水土保持中应根据山区坡度和水深选择适当的植被高度。  相似文献   

11.
Three series of density-current experiments were performed in a 5.76 m flume. In the first series, the flume was horizontal, and in the second and third, it was inclined with a positive slope and negative slope, respectively. Energy relations during successive stages of density-current movement were computed from observed data, which showed an appreciable frictional energy dissipation. The computed friction factors of our experimental density-flows were compared to the friction factors for pipe flows (Moody diagram), and while the calculated friction factor increases with increasing Reynold's number within the range of our experiments (Re 2 × 103?2 × 104), it is concluded that with increasing Reynold's number above about 5 × 104 the friction factor decreases. For natural turbidity currents, the Moody diagram gives a reasonable estimate of the friction factor between the current and sediment bed. The value of the friction factor for the interface between the current and overlying water was found to be about 0.2 times the friction factor for the current and flume. However, due to errors inherent in measuring the depth of the current, a value of 0.4 would be more reasonable for density-currents in our range of Reynold's number. Friction tends to decrease the value of the dimensionless coefficient in Keulegan's law of saline front and to decrease the thickness of the flow. In contrast, the presence of a slope in the direction of flow tends to compensate the effect of friction. The angle θc that provides the potential energy to exactly offset the energy losses incurred during movement by the density-currents in our experiments has a calculated value of 31′. An empirical formula φ= 0.935θ—0·57 relating friction, in terms of the hydraulic gradient φ, to the slope angle θ was obtained. Since the thickness of the current can be computed from the relationship between φ and θ, we estimated the thickness of naturally occurring density-currents in Swiss lakes. The results suggest the applicability of our experimental results to small turbidity currents in nature. Our analysis further indicates that large turbidity currents have a small φ and can be expected to flow very long distances on a flat abyssal plain.  相似文献   

12.
祁连山摆浪河全新世冰量变化初探   总被引:2,自引:2,他引:0  
采用祁连山老虎沟12号冰川2009年RTK测量生成的数字高程模型(DEM), 建立现代冰川表面横截面拟合的二次方程, 结合差分GPS测量的冰碛垄形态, 运用于祁连山摆浪河上游14号冰川和16号冰川全新世以来冰量变化的估算. 结果表明: 新冰期以来冰储量减少0.38 km3, 小冰期以来14号冰川和16号冰川的冰储量分别减少0.016 km3和0.047 km3; 根据祁连山全新世各个时期最大冰川范围的时间, 估计了全新世以来14号和16号冰川冰储量的减少速率, 新冰期以来为12.2×10-5~15.0×10-5 km3·a-1, 小冰期以来分别为4.0×10-5~5.3×10-5 km3·a-1, 11.75×10-5~15.7×10-5 km3·a-1.  相似文献   

13.
喀喇昆仑山西北部冰川运动速度地形控制特征   总被引:2,自引:2,他引:0  
为了探讨地形和海拔对冰川季节和年平均运动速度的影响程度,利用2013-2018年GoLive数据与ASTER GDEM V2数据对喀喇昆仑山西北部3 389条冰川的地形(坡度、坡向、海拔)和冰川运动速度进行了综合分析。结果表明:冰川表面运动速度在物质平衡线处(3 970~4 770 m)达到最快,是冰川积极维持物质平衡的一种体现。坡度平缓地区在不同海拔下的冰川运动速度有明显的差别,但是不同坡度地区的冰川运动速度随海拔变化的趋势基本一致,均呈现先增大后减小。北坡冰川运动速度较平稳,南坡和西南坡的冰川运动速度(均为0.25 m·d-1)最快并且变化幅度较大,最小值与最大值相差近4倍。冰川运动速度不是呈现单一的季节性变化,同时还会受到地形的控制。低海拔区域冰川运动速度在消融期(3-6月)较快,中海拔区域在消融前(11月至次年2月)较快。  相似文献   

14.
为提高地下水与地表水交换量计算结果的准确性,本文利用水力联系、水头差、水温、氡-222、氢氧稳定同位素构建综合识别方法(HHTRO),对新汴河宿州段地下水与地表水水量交换进行识别,并计算交换量。计算结果表明:研究河段单位河长地表水补给地下水的水量变化范围为8.69~366.82 m3/(d·m),地下水补给地表水的水量变化范围为0.72~120.90 m3/(d·m);研究河段左岸为地下水补给地表水,单位河长净补给量为45.26 m3/(d·m);河段右岸为地表水补给地下水,单位河长净补给量为214.33 m3/(d·m);研究河段地下水与地表水水量交换以地表水补给地下水为主,地表水补给地下水的比例为55.14%。本研究可推动地下水与地表水交换量计算方法的发展,为流域或区域水资源评价提供必要的理论方法。  相似文献   

15.
祁连山西段冰川区与非冰川区气温梯度年内变化特征   总被引:1,自引:0,他引:1  
为研究冰川区与非冰川区不同下垫面对气温梯度的影响。本文利用祁连山老虎沟流域4 180 m, 4 550 m和5 040 m处的三个气象站及肃南、肃北、托勒、玉门、酒泉、瓜州、敦煌等七个国家气象站2011-2013年的日平均气温资料,分析了祁连山西段冰川区与非冰川区年内气温梯度特征,并结合相应时段的降水资料以及其他气象因素对其变化特征做了分析。结果表明:(1)在非冰川区,气温梯度随海拔上升而增大,且有明显的月际波动特征,年内梯度呈现先减后增的趋势,夏季最大,冬季最小,年气温梯度为0.50℃·(100m)-1;(2)在冰川区,气温梯度呈现先增后减的趋势,夏季最小,冬季最大,年气温梯度为0.61℃·(100m)-1,日内变化特征为白天气温梯度变化幅度大但值较小,夜间变化幅度小,稳定在0.83℃·(100m)-1左右,日内平均气温梯度为0.49℃·(100m)-1;(3)冰川区与非冰川区年内温度梯度与降水梯度呈相反的变化趋势,表明降水对气温梯度变化有一定的影响。(4)由于非冰川区与冰川区下垫面不同,气温梯度呈相反的年内变化趋势,在由非冰川区气温推算冰面气温时必须考虑温跃值影响,老虎沟12号冰川年平均温跃值为1.30℃。  相似文献   

16.
黑河流域地下水同位素年龄及可更新能力研究   总被引:3,自引:1,他引:2  
通过对黑河流域地下水的放射性同位素如氚(T)和14C的测定, 对该流域浅层和深层地下水的年龄以及其更新速率进行了估算. 结果表明: 整体上看, 从黑河流域的上游、中游至下游, 浅层和深层地下水年龄逐渐增加, 地下水更新速率也逐渐增大. 其中, 黑河上游浅层和深层地下水平均更新速率分别为1.96%·a-1和1.76%·a-1, 可更新能力最强; 中游浅层和深层地下水平均更新速率为1.25%·a-1和0.68%·a-1, 可更新能力次之; 下游浅层和深层地下水平均更新速率分别为0.74%·a-1和0.18%·a-1, 可更新能力最差. 黑河流域不同地带地下水由于循环条件的不同, 浅层和深层地下水年龄存在较大的差异. 其中, 中游山前平原补给条件较好, 浅层和深层地下水年龄较小; 中、下游远离河道地区浅层和深层地下水补给条件差, 显示了更老的年龄. 黑河流域埋深40 m以上的浅层地下水平均更新速率(1.13%·a-1)高于埋深40~100 m之间的中层地下水(0.65%·a-1)以及埋深100 m以下深层地下水(0.55%·a-1). 因此, 在黑河流域地下水开发过程中要合理开发浅层地下水, 适当缩减开发深层地下水.  相似文献   

17.
于靖  张华 《水科学进展》2015,26(5):714-721
为研究城市小型河流中污染物的物理迁移过程规律,分析基流条件下流动水体与暂态存储区之间的滞留交互作用,采用溴化锂(LiBr)作为保守性示踪剂进行野外现场示踪试验,结合一维溶质运移存储模型(One-dimensional Transport with Inflow and Storage model, OTIS)定量解析潜流交换特性,估算纵向弥散系数(D)、潜流交换面积(As)、主河道断面面积(A)和潜流交换系数(α).模型度量指标DaI值和均方根误差值结果表征参数模拟结果可靠性高,拟合效果理想.由泵入点O至下游1 300 m设置的A、B、C、D 4处监测点的模拟结果表明,水文参数DAsAα均随水文条件而变,OB河段(0~600 m)潜流交换能力较弱,主要以对流弥散过程为主;BD河段(600~1 300 m)具有较强的暂态存储能力,对溶质的滞留时间长;BC(600~1 000 m)和CD(1 000~1 300 m)河段交换系数分别为(3.42×10-6±0.65×10-6)s-1和(2.87×10-6±0.81×10-6 )s-1;河段BC存在2.2×10-5m3/(s·m)的侧向补给流量.4个河段对比发现,城市河流渠道化、河床沉积物贫瘠等特征导致潜流交换能力弱化.  相似文献   

18.
Several hydraulic techniques were used to estimate the flow depth (0.3 m) associated with the deposition of a tabular set (micro-delta) of cross-stratified sand in the Brampton esker. The competency of the flow, deduced from both the grain size and structural characteristics of the set, gave a value of approximately 0.65 m/sec for the palaeo-velocity of the flow. Estimates of palaeo-depth and velocity facilitated calculation of the Froude and Reynolds numbers, about 0.38 and 1.24 · 105, respectively. Extrapolation of other parameters included bed shear stress τ0 (4.50 N/m2), shear velocity U* (0.067 m/sec), dimensionless Chezy coefficient C/√g (9.7), slope of the energy gradient S(0.00153), Darcy-Weisbach friction factor f(0.085), Manning roughness coefficient n(0.027) and discharge of bed-material load (19 metric tons/day/m). The figures cited are reasonable estimates only. The occurrence of regressive ripples in the bottomset of the micro-delta aided in the hydraulic interpretation. These flow characteristics are only representative of the final stages of deposition at one location on the flank of the esker. The core of the esker was probably deposited under different hydraulic conditions.  相似文献   

19.
研究了山坡地形曲率的空间分布特征,发现流域略呈现出微凹、发散的形状特征,平均的剖面和水平曲率分别为-4.62×10-4和3.49×10-4。通过划分源头型和边坡型山坡,发现源头山坡多是收敛的,边坡型山坡则多为发散的;在山坡内部收敛、发散、凹和凸等地形地貌类型是同时存在的,即山坡一般由相互组合的各种坡型所组成。基于野外采样观测的成果,分析了和睦桥子流域90个采样点的土壤含水量及其对应曲率的相互关系。结果显示:一般来说,凹形山坡、收敛形山坡对应的土壤含水量更高,而凸形和发散形山坡对应的土壤含水量较低;不论是收敛的凹坡,还是发散的凸坡,其采样点土壤含水量都有随高程下降而升高的趋势,即愈靠近沟谷土壤含水量愈大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号