首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
高频地波雷达生成海洋表面矢量流图   总被引:10,自引:0,他引:10  
武汉大学研制的双站高频地波雷达系统OSMAR2000利用测得的两幅单站径向海流图生成矢量海流图。经典矢量流图生成方法不能直接应用到OSMAR2000系统中。本文提出一种先在极坐标系下用自然三次样条函数将径向流插值到公共网格上然后直接进行矢量合成的矢量海流图生成方法。OSMAR2000在东海的表面矢量流实测结果与作对比验证的传统海流计测量结果十分吻合。对比数据表明,该方法是可行的,且优于先进行径向流线性插值后矢量合成的矢量流图生成方法。这也是国内首次利用高频地波雷达实现海洋表面矢量流的实时监测。  相似文献   

2.
The Communications Research Laboratory (CRL) has been developing high-frequency ocean surface radars (HFOSRs). The CRL dual-site HFOSR system can clarify the distribution of surface currents with a nominal range of 50 km. This paper presents a theoretical and experimental analysis of the measurement error of the current vector obtained by the CRL HFOSR system, using a comparison of instantaneous current vectors acquired by the HFOSR system and current meters moored at a depth of 2 m, taking account of the vertical current shear. The theoretical analysis shows that the probability distribution of the measurement error of the current vector forms concentric ellipses at a spatial scale that depends on the RMS measurement error of radial current velocity and with an aspect ratio that depends only on the azimuthal difference of the radar beams. When the azimuthal difference is a right angle, the measurement error of the current vector is at a minimum. A comparison between instantaneous current vectors measured by the CRL HFOSR system and moored current meters shows that the distribution of the difference vector between the radar current and the meter current agrees well with the theoretical measurement error of the current vector and that the RMS of difference vector length is about 10 cm s–1 while the azimuthal difference between two radar beams is between 45 and 135 degrees. The accuracy of current measurement by the dual-site HFOSR system is therefore considered to be less than 10 cm s–1 in this range of azimuthal difference. The theoretical analysis will be applicable for a wider range of the azimuthal difference of the radar beams.  相似文献   

3.
This paper focuses on the validation of remotely sensed ocean surface currents from SeaSonde-type high-frequency (HF) radar systems. Hourly observations during the period July 22, 2003 through September 9, 2003 are used from four separate radar sites deployed around the shores of Monterey Bay, CA. Calibration of direction-finding techniques is addressed through the comparisons of results obtained using measured and ideal (i.e., perfect) antenna patterns. Radial currents are compared with observations from a moored current meter and from 16 surface drifter trajectories. In addition, four overwater baselines are used for radar-to-radar comparisons. Use of measured antenna patterns improves system performance in almost all cases. Antenna-pattern measurements repeated one year later at three of the four radar locations exhibit only minor changes indicating that pattern distortions are stable. Calibrated results show root-mean-square (rms) radial velocity differences in the range of 9.8-13.0 cm/s, which suggest radar observation error levels in the range of 6.9-9.2 cm/s. In most cases, clear evidence of bearing errors can be seen, which range up to 30deg for uncalibrated radar-derived radial currents and up to 15deg for currents obtained using measured antenna patterns. Bearing errors are not, however, constant with angle. The results recommend use of measured antenna patterns in all SeaSonde-type applications. They also recommend an expanded simulation effort to better describe the effects of antenna-pattern distortions on bearing determination under a variety of ocean conditions  相似文献   

4.
合成孔径雷达(SAR)海面场景原始数据仿真是研究海洋动力参数(表面波浪、风矢量和洋流)的有效工具。目前海面场景原始数据仿真方法已经基于逆Omega-K算法实现了海洋运动参数的空间变化。但是目前仅仅讨论了正侧视情况下的海面场景仿真,应用范围有限,同时没有考虑Stokes漂流以及Bragg相速度的影响,而这两者都是存在于真实海面的。通常情况下为了反演得到海面流场的二维速度矢量,雷达需要从两个不同的方位方向观察海面的同一个区域,因此这就需要考虑大斜视的雷达波束,同时Stokes漂流和Bragg相速度是SAR海表面流场观测不容忽视的两种运动。本文在不改变原有正侧视逆Omega-K算法的情况下,通过增加重新计算零方位时刻的斜视波束中心位置坐标,并据此确定SAR原始数据在多普勒域的位置来将其扩展到大斜侧视逆Omega-K算法,并通过时域Stokes漂流公式到频域内离散化Stokes漂流公式的推导来加入Stokes漂流,以及根据Bragg散射机制加入了Bragg相速度。仿真结果表明,经过聚焦成像后的SAR图像很好的体现了真实海面波浪场的形状,同时能够很好地反演出设定的雷达径向流场速度,且流速精度误差控制在6%以内。最后也证明了Bragg相速度以及Stokes漂流对于海面流场的影响不可忽视。  相似文献   

5.
Wuhan University's ocean state measuring and analyzing radar (OSMAR2000), working at around 7.5 MHz in the low region of the HF band with a 120-m-long linear receiving antenna array, can measure ocean surface current at ranges of up to 200 km. An ocean surface current algorithm based on direction finding (DF) using the multiple signal classification (MUSIC) method is developed for the OSMAR2000 radar. This paper describes the OSMAR2000 ocean surface current algorithm based on MUSIC and the validation experiments in the East China Sea. The results of the ocean surface current measurements demonstrate that the OSMAR2000 ocean surface current algorithm based on MUSIC is feasible for the long range of ocean surface current mapping with a sufficient bearing resolution.  相似文献   

6.
A high-frequency multifrequency coastal radar operating at four frequencies between 4.8 and 21.8 MHz was used as part of the third Chesapeake Bay Outflow Plume Experiment (COPE-3) during October and November, 1997. The radar system surveyed the open ocean east of the coast and just south of the mouth of Chesapeake Bay from two sites separated by about 20 km. Measurements were taken once an hour, and the eastward and northward components of ocean currents were estimated at four depths ranging from about 0.5 m to 2.5 m below the surface for each location on a 2 by 2 km grid. Direction of arrival of the signals was estimated using the MUSIC algorithm. The radar measurements were compared to currents measured by several moored acoustic Doppler current profilers (ADCPs) with range bins 2-14 m below the water surface. The vertical structure of the current was examined by utilizing four different radar wavelengths, which respond to ocean currents at different depths, and by using several ADCP range bins separated by 1-m intervals. The radar and ADCP current estimates were highly correlated and showed similar depth behavior, and there was significant correlation between radar current estimates at different wavelengths and wind speed  相似文献   

7.
浪向代表着海浪传播方向,它是海上交通安全以及海岸资源管理的重要海洋环境参数之一。本文针对X波段测波雷达对海杂波的连续成像,提出了一种基于光流法的海浪传播方向反演新方法。该方法利用X波段测波雷达接收的海面回波图像序列直接进行光流运动估计,将得到的每个像素点的运动矢量进行加权平均,最后得到实际的海浪传播方向。与传统基于频域的X波段测波雷达浪向反演方法相比,本文提出的方法直接从时域来进行回波信号处理,无需提前得到调制传递函数以及精确的海流,减少了由于海流估算的不准确以及调制传递函数选取的误差而给雷达浪向反演带来的影响。同时,该方法简单高效,占用资源少,将其应用至仿真雷达回波以及现场实测数据来进行浪向反演,反演得到的浪向与仿真设定浪向值以及浮标实时观测浪向结果都有很好的吻合度,变化趋势也完全一致,进而验证了该方法的有效性以及准确性。  相似文献   

8.
On the accuracy of current measurements by means of HF radar   总被引:3,自引:0,他引:3  
The accuracy of surface current velocities measured by high-frequency (HF) radar is investigated. Data from the two radar systems of the University of Hamburg, CODAR (Coastal Radar) and WERA (Wellen Radar), are compared with in situ data. In one experiment, CODAR and a near-surface current meter were operated simultaneously over a 19-day period. In addition, WERA was operated for 6 days during that period. In the other experiment, WERA and a bottom-mounted current meter were operated simultaneously over a 35-day period. Both radars use frequencies of about 30 MHz where backscattering is due to ocean waves of 5 m wavelength. The influence of the orbital motion of underlying longer waves on radial velocity errors is investigated. In accordance with theory, the measured standard deviations of HF-measured current velocities depend on the sea state. Depending on the sea state, estimated errors range from 3 to 10 cm·s-1 and explain only part of the rms difference of 10-20 cm·s-1 found between HF and in situ current measurements. The rest is assumed to be due the differences of the quantities measured, e.g., the spatial averaging  相似文献   

9.
Ocean currents are a key element in ocean processes and in meteorology, affecting material transport and modulating climate change patterns. The Doppler frequency shift information of the synthetic aperture radar (SAR) echo signal can reflect the dynamic characteristics of the sea surface, and has become an essential sea surface dynamic remote sensing parameter. Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current. However, the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking. In this study, we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current. Global ocean multi observation (MOB) products and global surface Lagrangian drifter (GLD) data are used to validate the Kuroshio flow retrieved from the SAR data. Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s. The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution, with the 90% confidence interval concentrated between –0.1 m/s and 0.1 m/s. Comparative analysis of SAR ocean current and GLD products, the correlation coefficient is 0.803, which shows to be significant at a confidence level of 99%. The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current, and has the capability to monitor current velocity over a wide range of values.  相似文献   

10.
About 10 years ago, the advanced application flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind-speed information at the ocean's surface. The AAFE RADSCAT flight missions and analyses helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross-section (NRCS) measurements as a function of the surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from the 26 RADSCAT flights during which the quality of the sensor and the surface wind measurements were felt to be understood. Subsets of this data base were used to model the relationship between theKu-band radar signature and the ocean-surface wind vector. The models developed partly from portions of this data base, supplemented with data from the Seasat (JASIN Report), were used for inversion of the Seasat-A Satellite Scatterometer (SASS) radar measurements to vector winds. This paper summarizes results from a comprehensive analysis of the RADSCAT/ocean wind signature deduced from this complete data set.  相似文献   

11.
利用2000—2008年的卫星高度计资料和QuikSCAT风场资料,反演了全球的海表的地转流和Ekman流,将两者合成后生成了0.5°×0.5°的逐周全球表层流产品。在计算Ekman流的时候,引入了权重函数,改进了Lagerloef方法中Ekman流在25°S和25°N上的不连续问题。分析表明:卫星资料反演的流产品能够反映出海表流场的特征,将其分别与TAO观测和SCUD流产品进行定量化的比较显示,所得流产品具有较高的反演精度和可信度,说明改进的方法是有效的。  相似文献   

12.
An ocean surface current radar (OSCR) in the very high frequency (VHF) mode was deployed in South Florida Ocean Measurement Center (SFOMC) during the summer of 1999. During this period, a 29-d continuous time series of vector surface currents was acquired starting on 9 July 1999 and ending 7 August 1999. Over a 20-min sample interval, the VHF radar mapped coastal ocean currents over a 7.5 km × 8 km domain with a horizontal resolution of 250 m at 700 grid points. A total of 2078 snapshots of the two-dimensional current vectors were acquired during this time series and of these samples, only 69 samples (3.3%) were missing from the time series. During this period, complex surface circulation patterns were observed that included coherent, submesoscale vortices with diameters of 2 to 3 km inshore of the Florida Current. Comparisons to subsurface measurements from moored and ship-board acoustic Doppler current profiles revealed regression slopes of close to unity with biases ranging from 4 to 8 cm s-1 between surface and subsurface measurements at 3 to 4 m beneath the surface. Correlation coefficients were 0.8 or above with phases of - 10 to - 20° suggestive of an anticyclonic veering of current with depth relative to the surface current. The radar-derived surface current field provided spatial context for an observational network using mooring-, ship- and autonomous underwater vehicle-sensor packages that were deployed at the SFOMC  相似文献   

13.
Ocean surface currents can be estimated, over a large coastal area, by utilizing the backscatter of high frequency (HF) radar waves from ocean gravity waves. Although the overall backscatter mechanism is complicated, the surface current information is contained within the spectral characteristics of two dominant Bragg components. The accuracy of the current estimate, following the usual FFT-based spectral estimate, is limited by the frequency resolution of the FFT and the time-varying characteristics of the Bragg components. This paper describes a high resolution parametric estimation of the ocean currents based on a recently proposed technique for analyzing time-varying signals. This technique, together with a time-domain ocean clutter model, allows all the Bragg signal information to be extracted from the two dominant eigenvalues and eigenvectors of a matrix constructed from the radar data. Using signals from an operational coastal surveillance radar, current estimates made using this technique are compared with those estimated by the conventional FFT-based method  相似文献   

14.
We propose a new method for the evaluation of the velocities of surface currents according to the data of measurements carried out by using high-frequency land-based radars. The method is based on the representation of the velocity fields via two scalar potentials, expansion of these potentials in series in basis functions, and determination of the coefficients of expansion according to the data of radar measurements as solutions of the corresponding variational problems. The errors of the procedure of determination of the coefficients of expansion are removed by using a special regularization procedure based on information theory. The proposed method enables one to fill gaps in the space and time series of radar measurements. We illustrate the method by an example of numerical analysis of mesoscale and submesoscale (10–50 km) surface currents in the Monterey Bay (California, USA) performed on the basis of the data of radar measurements carried out in August 1994. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 24–36, March–April, 2005.  相似文献   

15.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

16.
We consider a quasigeostrophic spectral model used for the prediction of synoptic currents in the barotropic ocean. The spectral method is based on the expansion of the current function in a double series in cosines. An algorithm of numerical evaluation of the nonlinear term in the equation of potential eddy is described in detail. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 62–69, July–August, 2006.  相似文献   

17.
This paper presents a minimum variance unbiased (MVU) estimator for estimating an ocean surface current using the multifrequency microwave radar technique. In this technique the current information is obtained by finding the difference between the measured phase velocities of some specific surface gravity waves and the phase velocities calculated from the dispersion relation for still water. By defining the problem as a linear estimation problem, we develop an unbiased estimator for the current component along the radar look direction, which has a variance that is inversely proportional to the sum of the squared wavenumbers of the gravity waves used in the measurements. We also study the performance of an MVU vector estimator based on radar observations along two directions. Our analysis shows that the confidence region of this estimator has the shape of an elongated ellipse with semi-axes and orientation which are dependent on the angle between the observation directions, but independent on the true current vector. Furthermore, the theoretical models are thoroughly tested using both simulated and real radar data, and these tests show very good agreement with the model predictions  相似文献   

18.
An observation operator for Doppler radar radial wind measurements is developed further in this article, based on the earlier work and considerations of the measurement characteristic. The elementary observation operator treats radar observations as point measurements at pre-processed observation heights. Here, modelling of the radar pulse volume broadening in vertical and the radar pulse path bending due to refraction is included to improve the realism of the observation modelling.
The operator is implemented into the High Resolution Limited Area Model (HIRLAM) limited area numerical weather prediction (NWP) system. A data set of circa 133 000 radial wind measurements is passively monitored against the HIRLAM six-hourly background values in a 1-month experiment. No data assimilation experiments are performed at this stage. A new finding is that the improved modelling reduces the mean observation minus background (OmB) vector wind difference at ranges below 55 km, and the standard deviation of the radial wind OmB difference at ranges over 25 km.
In conclusion, a more accurate and still computationally feasible observation operator is developed. The companion paper (Part II) considers optimal super-observation processing of Doppler radar radial winds for HIRLAM, with general applicability in NWP.  相似文献   

19.
针对利用X波段海浪雷达回波图像反演海浪参数(波高、波向、波周期)的需要,而海浪雷达回波信号的采集和存储是利用雷达回波图像序列反演海浪参数的必要前提,提出了基于PXI-9280 A/D采集卡对X波段海浪雷达回波进行采集的方案.具体介绍了PXI-9280 A/D采集卡的功能特性,海浪雷达回波信号样式,设计并完成了基于VC 6.0的采集和存储软件,并对使用该采集卡需要注意的实际问题给予说明.此外,还搭建了实验平台,给出了基于PXI-9280 A/D采集卡在我国南海某海域中采集数据并回放得到的海浪雷达回波图像,得到较满意的结果.  相似文献   

20.
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号