首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Analysis of subfossil remains of larval Chironomidae in 38 surface-sediment samples from between 53 and 189 m depth in Lake Tanganyika (East Africa) yielded 77 different morphotypes, including 7 Tanypodinae, 19 Orthocladiinae, and 51 Chironominae. Character-state differences between these morphotypes resemble differences at the species level in the better-known Holarctic fauna, hence we consider most of our Lake Tanganyika morphotypes equivalent to morphological species. Individual morphotypes were identified to species, genus, or tribe level depending on current alpha-taxonomic knowledge on the larvae of the group concerned, and the taxonomic resolution of preserved diagnostic features. This paper presents taxon diagnoses and an illustrated key to the Tanypodinae and Orthocladiinae in this Lake Tanganyika collection, with the aim to promote consistency of identification in studies using African Chironomidae as biological indicators of natural and anthropogenic environmental change in lacustrine ecosystems.  相似文献   

2.
This paper and a companion article present illustrated guides to the identification of sub-fossil chironomid larvae (Insecta: Diptera: Chironomidae) preserved in the sediments of low- and mid-elevation lakes in East Africa. They are based on analysis of surface-sediment death assemblages from 61 lakes located in the humid to semi-arid environments in equatorial East Africa (Uganda, Kenya, Tanzania), supplemented with similar surface-sediment samples from 12 lakes in the Horn of Africa (Ethiopia), and sub-recent core samples from six lakes in Kenya and two in Uganda. We analyzed about 11,000 specimens and identified 98.4% of these to species, species group, genus, or tribe level, depending on current -taxonomic knowledge of the various considered genera and the taxonomic resolution of preserved diagnostic features. We distinguished 90 different sub-fossil morphotypes, of which 16 are Tanypodinae, 19 are Orthocladiinae, and 55 are Chironominae. In this paper we focus on the subfamily Chironominae (tribes Chironomini and Tanytarsini). The diagnostic characters distinguishing these morphotypes from each other resemble differences at the species level in the better-known Holarctic fauna, hence we consider most of our morphotypes equivalent to morphological species or groups of closely related species. Given that core samples yielded only seven morphotypes not also found in the surface-sediment samples, the current inventory of 90 taxa likely represents the large majority of distinct sub-fossil chironomid larval types to be found in East African lakes, excluding the few very large Rift lakes, cold-water lakes above treeline, and special standing-water environments such as fens and bogs. Consistent use of a single set of morphological characters to identify both fossil and living chironomid larvae would ensure exchangeability of information between modem and paleoenvironmental studies on aquatic invertebrate communities in African lakes, and increase the relevance of paleoenvironmental reconstructions to water-quality evaluations aimed at sustainable management of scarce, fluctuating surface-water resources in tropical East Africa.  相似文献   

3.
This paper and a companion article present illustrated guides to the identification of sub-fossil chironomid larvae (Insecta: Diptera: Chironomidae) preserved in the sediments of low- and mid-elevation lakes in East Africa. They are based on analysis of surface-sediment death assemblages from 61 lakes located in the humid to semi-arid environments of equatorial East Africa (Uganda, Kenya, Tanzania), supplemented with similar surface-sediment samples from 12 lakes in the Horn of Africa (Ethiopia), and sub-recent core samples from six lakes in Kenya and two in Uganda. We analyzed about 11,000 specimens and identified 98.4% of these to species, species group, genus, or tribe level depending on current -taxonomic knowledge of the various genera considered and the taxonomic resolution of preserved diagnostic features. We distinguished 90 different sub-fossil morphotypes, of which 16 are Tanypodinae, 19 are Orthocladiinae, and 55 are Chironominae. Diagnostic characters distinguishing these morphotypes from each other resemble differences at the species level in the better-known Holarctic fauna, hence we consider most of our morphotypes equivalent to morphological species or groups of closely related species. In this paper we focus on the Tanypodinae and Orthocladiinae, with special attention to the high taxon richness among the Pentaneurini. Patterns of cephalic setation were found to facilitate identification of Tanypodinae both at the genus and species level, and contributed to improved taxonomic resolution in sub-fossil East African material. High taxon richness and numerical abundance of the Orthocladiinae in our study lakes indicates that a considerable number of African Orthocladiinae is adapted to warm standing-water environments.  相似文献   

4.
Palaeogeographic and lake-level reconstructions provide powerful tools for evaluating competing scenarios of biotic, climatic and geological evolution within a lake basin. Here we present new reconstructions for the northern Lake Tanganyika subbasins, based on reflection seismic, core and outcrop data. Reflection seismic radiocarbon method (RSRM) age estimates provide a chronological model for these reconstructions, against which yet to be obtained age dates based on core samples can be compared. A complex history of hydrological connections and changes in shoreline configuration in northern Lake Tanganyika has resulted from a combination of volcanic doming, border fault evolution and climatically induced lake-level fluctuations. The stratigraphic expression of lake-level highstands and lowstands in Lake Tanganyika is predictable and cyclic (referred to here as Capart Cycles), but in a pattern that differs profoundly from the classic Van Houten cycles of some Newark Supergroup rift basins. This difference results from the extraordinary topographic relief of the Western Rift lakes, coupled with the rapidity of large-scale lake-level fluctuations. Major unconformity surfaces associated with Lake Tanganyika lowstands may have corresponded with high-latitude glacial maxima throughout much of the mid- to late Pleistocene.
Rocky shorelines along the eastern side of the present-day Ubwari Peninsula (Zaire) appear to have had a much more continuous existence as littoral rock habitats than similar areas along the north-western coastline of the lake (adjacent to the Uvira Border Fault System), which in turn are older than the rocky shorelines of the north-east coast of Burundi. This model of palaeogeographic history will be of great help to biologists trying to clarify the evolution of endemic invertebrates and fish in the northern basin of Lake Tanganyika.
  相似文献   

5.
New intermediate-resolution, normal-incidence seismic reflection profiles from Lake Tanganyika’s central basin capture dramatic evidence of base-level change during two intervals of the late Pleistocene. Four seismically-defined stratigraphic sequences (A–D) tied to radiocarbon-dated sediment cores provide a chronology for fluctuating environmental conditions along the Kalya Platform. Stacked, oblique clinoforms in Sequence C are interpreted as prograding siliciclastic deltas deposited during a major regression that shifted the paleo-lake shore ∼21 km towards the west prior to ∼106 ka. The topset-to-foreset transitions in these deltas suggest lake level was reduced by ∼435 m during the period of deposition. Mounded reflections in the overlying sequence are interpreted as the backstepping remnants of the delta system, deposited during the termination of the lowstand and the onset of transgressive conditions in the basin. The youngest depositional sequence reflects the onset of profundal sedimentation during the lake level highstand. High amplitude reflections and deeply incised channels suggest a short-lived desiccation event that reduced lake level by ∼260 m, interpreted as a product of Last Glacial Maximum (32–14 ka) aridity. Paleobathymetric maps constructed for the two interpreted regressions reveal that despite the positive lake-floor topography created by the Kavala Island Ridge Accommodation Zone, Lake Tanganyika remained a large, mostly connected water body throughout the late Pleistocene. The results of this analysis further imply that Lake Tanganyika is the most drought resistant water body in the East African tropics, and may have acted as a refuge for local and migrating fauna during periods of prolonged aridity.  相似文献   

6.
Paleorecords from multiple indicators of environmental change provide evidence for the interactions between climate, human alteration of watersheds and lake ecosystem processes at Lake Tanganyika, Africa, a lake renowned for its extraordinary biodiversity, endemism and fisheries. This paper synthesizes geochronology, sedimentology, paleoecology, geochemistry and hydrology studies comparing the history of deltaic deposits from watersheds of various sizes and deforestation disturbance levels along the eastern coast of the lake in Tanzania and Burundi. Intersite differences are related to climate change, differences in the histories of forested vs. deforested watersheds, differences related to regional patterns of deforestation, and differences related to interactions of deforestation and climate effects. Climate change is linked to variations in sediment accumulation rates, charcoal accumulation, lake level and water chemistry, especially during the arid-humid fluctuations of the latter part of the Little Ice Age. Differences between forested and deforested watersheds are manifested by major increases in sediment accumulation rates in the latter (outside the range of climatically driven variability and for the last 40 years unprecedented in comparison with other records from the lake in the late Holocene), differences in eroded sediment and watershed stream composition, and compositional or diversity trends in lake faunal communities related to sediment inundation. Variability in regional patterns of deforestation is illustrated by the timing of transitions from numerous sedimentologic, paleoecologic and geochemical indicators. These data suggest that extensive watershed deforestation occurred as early as the late-18th to the early-19th centuries in the northern part of the Lake Tanganyika catchment, in the late-19th to early-20th centuries in the northern parts of modern-day Tanzania, and in the mid-20th century in central Tanzania. Rapid increases in sediment and charcoal accumulation rates, palynological and lake faunal changes occurred in the early-1960s. We interpret this to be the result of greatly enhanced flushing of sediments in previously deforested watersheds triggered by extraordinary rainfall in 1961/62. Regional differences in deforestation histories can be understood in light of the very different cultural and demographic histories of the northern and central parts of the lake shoreline. Incursion of slaving and ivory caravans from the Indian Ocean to the central coast of Lake Tanganyika by the early-19th century, with their attendant diseases, reduced human and elephant populations and therefore maintained forest cover in this region through the late-19th to early-20th centuries. In contrast, the northeastern portion of the lakeshore did not experience the effects of the caravan trades and consequently experienced high human population densities and widespread deforestation much earlier. These studies demonstrate the importance of paleolimnological data for making informed risk assessments of the potential effects of watershed deforestation on long-term lake ecosystem response in the Lake Tanganyika catchment. Differences in sediment yield and lake floor distribution of that yield, linked to factors such as watershed size, slope, and sediment retention, must be accounted for in management plans for both human occupation of currently forested watersheds and the development of future underwater reserves.  相似文献   

7.
We report here on the first detailed ostracode stratigraphic record to be obtained from late Holocene sediments of Lake Tanganyika. We analyzed four cores, three from the northern lake region and a fourth from a more southern lake locality, that collectively record ostracode assemblages under a variety of disturbance regimes. These cores provide a stratigraphic record of ostracode abundance and diversity, as well as depositional changes over time periods of decades to millennia. We have investigated the fossil ostracodes in these cores by looking at temporal changes of species diversity and population structure for the species present. All four cores provided distinct patterns of ostracode diversity and abundance. BUR-1, a northern lake core obtained close to the Ruisizi River delta, yielded a sparse ostracode record. Karonge #3, another northern core from a site that is closely adjacent to a river delta with high sediment loading, yielded almost no ostracodes. The third core 86-DG-14, taken from a somewhat less disturbed area of the lake, suggests that there have been recent changes in ostracode populations. Through most of the lower portion of this core, ostracode abundance is low and species richness is relatively constant. Above 7 cm there is a marked increase in ostracode abundance and a corresponding decrease in species richness, probably signaling the onset of a major community disturbance, perhaps due to human activities. The southernmost core, 86-DG-32, is from a site that is well removed from influent rivers. Ostracode abundance varies erratically throughout the core, whereas species richness is relatively constant and high throughout the core. The temporal variation evident in ostracode community makeup both within and between the studied cores may be a result of naturally patchy distributions among ostracodes, coupled with local extinctions and recolonizations, or it may reflect inadequate sampling of these high diversity assemblages. In either case, these cores illustrate the potential to obtain high resolution ostracode records from the rich, endemic fauna of Lake Tanganyika that can be used to address questions about the history of community structure and human impacts in this lake.  相似文献   

8.
This study investigates the soil fauna in a part of the rainless desert of southern Egypt. Three sites were examined: two downstream of Wadi Allaqi, both of which have been inundated by the water of Lake Nasser for several years. The third site is in Wadi Quleib, a principal tributary of Wadi Allaqi which was not inundated. Soil fauna were collected by pitfall traps during April-November 1989. Data were treated by multivariate analysis techniques, including correspondence analysis and ascending hierarchic classification. Most species were Arthropoda, particularly Coleoptera (7 species). Wadi Quleib was richer than Wadi Allaqi both in number of species and density. In Wadi Allaqi, the first site was richer than the second, both in species and density. These differences are partially related to differences in soft texture between Wadi Quleib and Wadi Allaqi, and to the presence of dense groves of Tamarix nilotica in the first site of Wadi Allaqi.  相似文献   

9.
Documenting the history of catchment deforestation using paleolimnological data involves understanding both the timing and magnitude of change in the input of erosional products to the downstream lake. These products include both physically-eroded soil and the byproducts of burning, primarily charcoal, which arise from both intentional and climatically-induced changes in fire frequency. As a part of the Lake Tanganyika Biodiversity Projects special study on sedimentation, we have investigated the sedimentological composition of seven dated cores from six deltas or delta complexes along the east coast of Lake Tanganyika: the Lubulungu River delta, the Kabesi River delta, the Nyasanga/Kahama River delta, and the Mwamgongo River delta in Tanzania, and the Nyamusenyi River delta and Karonge/Kirasa River delta in Burundi. Changes in sediment mass accumulation rates, composition, and charcoal flux in the littoral and sublittoral zones of the lake that can be linked to watershed disturbance factors in the deltas were examined. Total organic carbon accumulation rates, in particular, are strongly linked to higher sediment mass accumulation from terrestrial sources, and show striking mid-20th century increases at disturbed watershed deltas that may indicate a connection between increased watershed erosion and increased nearshore productivity. However, changes in sedimentation patterns are not solely correlated with the 20th century period of increasing human population in the basin. Fire activity, as recorded by charcoal accumulation rates, was also elevated during arid intervals of the 13th–early 19th centuries. Some differences between northern and southern sedimentation histories appear to be correlated with different histories of human population in central Tanzania in contrast with northern Tanzania and Burundi.  相似文献   

10.
High-resolution quantitative analysis of ostracod assemblages from 4.3-m-thick freshwater tufa-rich sediments, deposited during the last 12.8 ka in Lake Sinijärv, northern Estonia, yielded information on water level, trophic state conditions, and temperature changes since the late glacial. AMS 14C dates from aquatic mosses provided time constraints on the palaeoenvironmental development of the region. In the ostracod assemblage structure, four faunal zones (OFZ) were determined. The most significant change in the ostracod fauna occurred at 10,590 cal. y BP, when a typical littoral, polythermophilic fauna was replaced by a mostly sublittoral, species-rich meso- to stenothermophilic fauna. The ostracod data indicate two major low-water-level periods in the lake at 12,800–10,590 and 7,600–3,700 cal. y BP. Sediment analysis indicates the most intensive tufa precipitation occurred during these low stand periods, rather than during the warmest climate in Estonia between 8,000 and 4,500 cal. y BP. The late glacial low water level in the groundwater-fed Lake Sinijärv at 12,800–10,590 cal. y BP coincides partly with the regression in the Lake Peipsi basin (14,000–12,100 cal. y BP) and with the last drainage event of the Baltic Ice Lake at 11,600 cal. y BP. The low-water-level period in Lake Sinijärv occurred earlier than in lakes in the SE sector of Scandinavian glaciation. The change from low to high water level in Lake Sinijärv at 10,590 cal. y BP preceded the first post-glacial transgression events in the small lowland lakes of Estonia, southern Sweden, Poles`ye in Belarus, and Valday in NW Russia. In general, the mid-Holocene low-water-level period in Lake Sinijärv between 7,600 and 3,700 cal. y BP is concurrent with the regressions in the lakes of the SE sector of Scandinavian glaciation.  相似文献   

11.
Evaporation dominates the removal of water from Lake Tanganyika, and therefore the oxygen isotope composition of lake water has become very positive in comparison to the waters entering the lake. The surface water in Lake Tanganyika has remained relatively unchanged over the last 30 years with a seasonal range of +3.2 to +3.5 VSMOW. Water from small rivers entering the lake seems to have a 18O value between –3.5 and –4.0, based on scattered measurements. The two largest catchments emptying into the lake deliver water that has a 18O value between these two extremes. This large contrast is the basis of a model presented here that attempts to reconstruct the history of runoff intensity based on the 18O of carbonate shells from Lake Tanganyika cores. In order to use biogenic carbonates to monitor changes in the 18O of mixing-zone water, however, the oxygen isotope fractionation between water and shell carbonate must be well understood. The relatively invariant environmental conditions of the lake allow us to constrain the fractionation of both oxygen and carbon isotope ratios. Although molluskan aragonitic shell 18O values are in agreement with published mineral-water fractionations, ostracode calcite is 1.2 more positive than that of inorganic calcite precipitated under similar conditions. Ostracode shell 18O data from two cores from central Lake Tanganyika suggest that runoff decreased in the first half of this millennium and has increased in the last century. This conclusion is poorly constrained, however, and much more work needs to be done on stable isotope variation in both the waters and carbonates of Lake Tanganyika. We also compared the 13C of shells against predicted values based solely on the 13C of lake water dissolved inorganic carbon (DIC). The ostracode Mecynocypria opaca is the only ostracode or mollusk that falls within the predicted range. This suggests that M. opaca has potential for reconstructing the carbon isotope ratio of DIC in Lake Tanganyika, and may be a useful tool in the study of the history of the lakes productivity and carbon cycle.  相似文献   

12.
The change in dissolved inorganic δ13C in the ocean resulting from the change in δ13C in atmospheric CO2 owing to anthropogenic activities (the Suess effect) is well known. The need to correct for the Suess effect when applying δ13C in organic matter in lacustrine sediment deposited during the anthropocene as a productivity proxy, is widely although not universally acknowledged. This paper reviews conceptions about the Suess effect in lacustrine δ13Corg and methods to adjust for the Suess effect when δ13Corg is used to infer recent changes in aquatic productivity. Lake Tanganyika is used as an example to illustrate the necessity of the correction. When the Suess effect is not considered, interpretations of sediment core data can result that are opposite to those achieved with the correction applied, as is here shown in Lake Tanganyika and in other lakes. A new method to correct for the Suess effect is provided which has the advantage of being applicable to data for a larger period (1700–2000) than methods currently available. In addition, Lake Tanganyika is shown to be a net sink for CO2.  相似文献   

13.
Nonmarine ostracodes are often used as proxy indicators for the biotic response to climate as well as anthropogenic changes in large lakes. Their large numbers, small size and sensitivities to environmental conditions make them ideal for assessing how organisms respond to environmental perturbations. However, little is known about the various taphonomic processes related to preserving these organisms in the lacustrine fossil record. Without understanding the amount of time averaging associated with these assemblages, any interpretation of their biodiversity and paleoecology may be problematic.To address these issues, we conducted actualistic experiments to determine transport, time-averaging, and the amount of taphonomic bias in ostracode sub-fossil assemblages. Sand transport experiments revealed significant mixing at all sites at shallower depths and significant mixing on rocky substrates but not sandy ones. Comparisons with ostracode material collected along the experimental transects support this model and demonstrate time averaging in both the sandy and rocky substrates. Preservational models were derived from the experimental data and applied to interpreting the paleobiologic record of ostracodes from piston cores in both Lake Tanganyika and Malawi. The core record reveals assemblages that have undergone significant time-averaging, and in the case of Lake Malawi, preservational degradation. In the core examined from Tanganyika, most assemblages resemble the time-averaged experimental model with respect to species richness, percentage of articulated shells and heavy bias towards adult dead individuals. In the Malawi cores, most of the valves were preserved only as internal molds. The taphonomic signature of these samples resemble the time-averaged assemblages of Tanganyika cores, even though carapaces are not often present.Both the experimental and live/dead valve data suggest significant time-averaging and transport, smearing seasonal-yearly data in some environments involved in using ostracodes to assess biotic changes as a result of climate and or anthropogenically-induced environmental change. Ostracode species richness estimates were impacted by time averaging because transport of dead valve material occurs at high percentages in the shallow depths and on the rocky substrates, suggesting that the ostracode death assemblages in these areas will not reflect living populations. In addition, ecologic models based only upon death assemblages will be less resolved than those based upon live assemblages. A time averaging index was derived using the % dead juveniles ratio, as well as sedimentation rate and information on the population dynamics, if known.  相似文献   

14.
辛未冬  殷秀琴  宋博 《地理研究》2013,32(3):413-420
松嫩草原土壤动物的分布格局受多种因素的综合影响,地形通过影响其他环境因素进而能够影响土壤动物的分布格局。本研究分别在松嫩草原固定沙丘和草甸选取5个生境,进行为期一年的土壤动物群落调查,分析土壤动物生态分布特征和多样性特征,探讨地形和时间对土壤动物分布格局的影响。结果显示,研究期间获得土壤动物密度为5144.62 ind·m-2,所获土壤动物隶属于4门8纲24类;不同生境土壤动物多样性指数随时间变化规律存在一定的差异性,方差分析发现,时间和地形对土壤动物数量特征和多样性特征具有明显的作用,但是地形和时间对土壤动物群落的交互作用不是十分明显。因此,地形分异能够显著地影响松嫩草原土壤动物的分布格局,这可能主要与生境的生物和非生物特征有关。  相似文献   

15.
Pollen spectra from seven short cores taken from deltaic sites in the central and northern parts of Lake Tanganyika provide information about vegetation changes around the lake during the last 5000 years. Pollen analysis was undertaken to understand the history and timing of catchment deforestation and its causal linkage to excess sedimentation and ecosystem change in Lake Tanganyika. The spectra are dominated by grass pollen at all levels in every core. Grass pollen percentage values range between 40 and 80%. Low values of arboreal pollen taxa (1–20%) were documented from most cores except core LT-98-2M. Core LT-98-2M represents the longest duration vegetation record of this study (close to 5000 years BP), and records the onset of increasingly arid conditions in the Late Holocene, especially after 500 A.D., with the probable replacement of forest by open grassland in the Mahale Mountains region. The pollen/spore content for other cores showed a consistent trend of a decrease in grass pollen and an increase in pteridophyte and forest indicator pollen taxa during the last few centuries, contemporaneous with other indications of increased watershed disturbance from forest clearing (especially isotopes and lake faunal change). The timing or strength of this trend is not tied to specific levels of watershed disturbance. However, increasing fern spore abundance does occur progressively later towards the south, where modern human population densities are lower. Although increasing fern spore abundance is consistent with a land-clearing hypothesis, the rising arboreal pollen percentages are seemingly counterintuitive. One possible explanation is that increasing arboreal pollen proportions reflects the recycling of abundant pollen of this type from rapidly eroding soils. Another likely explanation for this finding is that land clearing involved the replacement of miombo woodland, with its mixture of trees producing little pollen and understory grasses producing large amounts of pollen, by the present day cassava, banana, and legume agricultural systems, all of which are poor pollen producers. This shift in catchment vegetation would increase the relative contribution of Afromontane pollen transported long distances from the surrounding highland regions. This hypothesis is consistent with both the lack of correlation of palynological history with specific watershed deforestation attributes, as well as the broader historical record of human habitation in the Lake Tanganyika region. This study also highlights the need for both modern pollen transect data from the region and comparative cores from low elevation swamps or ponds (wetlands) in the region with smaller catchment areas.  相似文献   

16.
Abstract We present here the initial results of a high-resolution (sparker) reflection seismic survey in Northern Lake Tanganyika, East African Rift system. We have combined these results with data from earlier multichannel reflection seismic and 5-kHz echosounding surveys. The combination of the three complementary seismic investigation methods has allowed us to propose a new scenario for the late Aliocene to Recent sedimentary evolution of the North Tanganyika Basin. Seismic sequences and regional tectonic information permit us to deduce the palaeotopography at the end of each stratigraphic sequence. The basin history comprises six phases interpreted to be responses to variations in regional tectonism and/or climate. Using the reflection seismic-radiocarbon method (RSRM), the minimum ages for the start of each phase (above each sequence boundary) are estimated to be: ?7.4 Ma, ? 1.1 Ma, ?393–363 ka, ?295–262 ka, ? 193–169 ka, ?40–35 ka. Corresponding lowstand lake elevations below present lake level for the last five phases are estimated to have been: ?650–700 m, ?350 m, ?350 m, ?250 m and ? 160 m, respectively. The latest phase from ?40–35 ka until the present can be subdivided into three subphases separated by two lowstand periods, dated at ?23 ka and ? 18 ka. From the late Miocene until the mid Pleistocene, large-scale patterns of sedimentation within the basin were primarily controlled by tectonism. In contrast, from the mid Pleistocene to the present, sedimentation in Lake Tanganyika seems to have responded dramatically to climatic changes as suggested by repeated patterns of lake level fluctuations. During this period, the basin infill history is characterized by the recurrent association of three types of deposits: ‘basin fill’ accumulations; lens-shaped ‘deep lacustrine fans’; and ‘sheet drape’ deposits. The successive low-lake-level fluctuations decreased in intensity with time as a consequence of rapid sedimentary filling under conditions of declining tectonic subsidence. The climate signal has thus been more pronounced in recent sedimentary phases as tectonic effects have waned.  相似文献   

17.
We investigated paleolimnological records from a series of river deltas around the northeastern rim of Lake Tanganyika, East Africa (Tanzania and Burundi) in order to understand the history of anthropogenic activity in the lakes catchment over the last several centuries, and to determine the impact of these activities on the biodiversity of littoral and sublittoral lake communities. Sediment pollution caused by increased rates of soil erosion in deforested watersheds has caused significant changes in aquatic communities along much of the lakes shoreline. We analyzed the effects of sediment discharge on biodiversity around six deltas or delta complexes on the east coast of Lake Tanganyika: the Lubulungu River delta, Kabesi River delta, Nyasanga/Kahama River deltas, and Mwamgongo River delta in Tanzania; and the Nyamuseni River delta and Karonge/Kirasa River deltas in Burundi. Collectively, these deltas and their associated rivers were chosen to represent a spectrum of drainage-basin sizes and disturbance levels. By comparing deltas that are similar in watershed attributes (other than disturbance levels), our goal was to explore a series of historical experiments at the watershed scale, with which we could more clearly evaluate hypotheses of land use or other effects on nearshore ecosystems. Here we discuss these deltas, their geologic and physiographic characteristics, and the field procedures used for coring and sampling the deltas, and various indicators of anthropogenic impact.  相似文献   

18.
太湖流域水生态功能三级分区   总被引:8,自引:0,他引:8  
高永年  高俊峰  陈垌烽  许妍  赵家虎 《地理研究》2012,31(11):1941-1951
水生态功能分区是进行流域现代水生态管理的必然要求,是面向水质目标管理控制单元划分的基础。针对太湖流域特征,提出了太湖流域水生态功能三级分区的目的和划分原则,在其指导下构建了太湖流域非太湖湖体区和太湖湖体区水生态功能三级分区指标体系;在GIS技术支撑下,分别以太湖流域非太湖湖体区1100多个和太湖湖体区3500多个水生态功能单元为基本空间统计单位,结合分区指标数据,制作了基于水生态功能单元的各项指标的空间分布图,采用二阶聚类法并结合人工辅助的方法将太湖流域划分为21个水生态功能三级区;分区水生态特征分析结果表明全流域各分区水生生物特征均具有较大的变异性,反映出流域内水生态的空间差异和不均匀性,体现了分区结果的合理性、科学性和可靠性。  相似文献   

19.
Quantitative analysis of variations in morphological types of charcoal were undertaken in sediment cores from three lakes on the Interior Plateau (BC, Canada) over the period AD 1919–2000. Seven distinct morphological types of charcoal were identified based on particle shape and structural features and were compared with seasonal precipitation and recorded area burned within 20 km-radius of study lakes. Fragile-type charcoal fragments, termed type M, displayed significant relationships to recorded area burned in sediment cores from Prosser (r 2 = 0.5; p = 0.0001) and Opatcho (r 2 = 0.2; p = 0.02) lakes. However, nonsignificant correlations (p > 0.05) were found between total charcoal and area burned. Robust and highly elongated morphotypes C and F were correlated to recorded spring precipitation (r 2 = 0.5; p = 0.002) in Opatcho Lake. Charcoal from a sediment core from Big Lake, the lake with the largest watershed, was significantly but inversely related to past fires (r 2 = 0.44; p = 0.0003), suggesting important contributions from secondary transportation and deposition. Models were developed to infer relative area burned and precipitation for the study lakes. Our results suggest that charcoal morphotypes are related to the biogeoclimatic and lake watershed characteristics. This study also suggest that charcoal morphotypes can provide insights on past fire and climate, which was not possible based on traditional analysis of total charcoal.  相似文献   

20.
Holocene sediments in Lake Winnipeg are expressed in the lower Lake Agassiz sequence which is unconformably overlain by the Lake Winnipeg sequence. Nine sites, covering the North and South basins and the connecting Narrows, were selected for analysis of Holocene changes in thecamoebian faunae. Only the Lake Winnipeg sequence contains thecamoebians. This study indicates that biologic productivity and consequently the type of organic material in the sediments is the main control on thecamoebian taxa in Lake Winnipeg. Other factors controlling the distribution of thecamoebians are water chemistry and turbidity. Inorganic sediment geochemistry and water temperature do not appear to significantly influence the thecamoebian fauna of Lake Winnipeg. Variations in the abundance of key thecamoebian species along a north-south transect divide Lake Winnipeg into three distinct areas. The North Basin has remained relatively unchanged since the retreat of Lake Agassiz as indicated by the domination of Difflugia manicata throughout its history. This species appears to prefer Cyanophyta and diatoms as its food source. In the Narrows harsh conditions created by turbid waters and lack of algal food taxa result in Centropyxis aculeata replacing Difflugia manicata as the dominant species. In the South Basin three thecamoebian assemblages are recognized. Cucurbitella tricuspis, indicative of eutrophic conditions, dominates the most recent sediments of the South Basin. The underlying sediments are characterized by Difflugia globulus. In Lake Winnipeg this species is not a cold climate (arctic) indicator as suggested elsewhere but instead seems to prefer sediments containing green and yellow-green algal material. A Centropyxis-Arcella Assemblage occurs only at the base of the southernmost core where it is indicative of an early phase of hyposaline conditions as developed in shallow pools during the southward transgression of Lake Winnipeg. This study illustrates the usefulness of thecamoebians as paleolimnological indicators. Environmental changes are more significant in the restricted South Basin resulting in distinct thecamoebian assemblages. In contrast, the North Basin provided a stable environment throughout the late Holocene reflected in only subtle faunal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号