首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The concept of water age is applied to calculate the timescales of the transport processes of freshwater in Lianzhou Bay,using a model based on ECOMSED.In this study,water age is defined as the time that has elapsed since the water parcel enters the Nanliu River.The results show that the mean age at a specified position and the runoff of the Nanliu River are well correlated and can be approximately expressed by a natural logarithmic function.During the neap tide,it takes 70,60 and 40 days in the dry,normal and rainy seasons for water to travel from the mouth of the Nanliu River to the northeast of Lianzhou Bay,respectively,which is not beneficial to water exchange in the bay.Tides significantly influence the model results;it takes five less days for the tracer to be transported from the mouth of the Nanliu River to the north of Guantouling during the spring tide than during the neap tide.  相似文献   

2.
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.  相似文献   

3.
Chen  Bingrui  Zhu  Jianrong  Fu  Lihui 《中国海洋湖沼学报》2010,28(6):1329-1339
This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation. The Meimao Sandbank is located along the southern bank of the South Passage in the Changjiang (Yangtze River) estuary, which is considered as a freshwater resource for Shanghai City. Interaction between runoff and tide is the main mechanism of the freshwater zone formation. However, the freshwater zone often suffers from saltwater intrusion in dry season. Tidal oscillation is stronger during spring tides, able to carry freshwater farther seaward. Therefore, it is more likely to occur during the ebb of a spring tide in dry seasons. In addition, the water zone is sensitive to runoff: when runoff decreases, it disappears, and vice versa. The northerly winds favor the formation of the freshwater zone.  相似文献   

4.
Tidal rivers are intrinsically complex because tidal propagation is influenced by river discharge. This study aims to examine the seasonal variation of tidal prism and energy variance in the tidal river of the Changjiang(Yangtze) River estuary in China. In order to quantify the behaviour of river and tide,we use numerical modelling that has been validated using measured data. We conduct our analysis by quantifying the discharge and energy variance in separate components for both the river and the tide,during wet and dry seasons. We note various definitions of tidal prism and explore the difference between tidal discharge on the flood and ebb and tidal storage volume. The results show that the river discharge attenuates the tidal motion and reduces the tidal flood discharge but the tidal storage volume is approximately constant with different riverine discharge since part of the fresh water discharge is intercepted and captured in the estuary due to the backwater effect. It appears that the tidal discharge adjusts according to the variation of river discharge to keep a constant tidal storage volume. An analysis of the hydraulics shows that the transition from tidal dominance(at the mouth) to river dominance(upstream) depends on the location of tidal current reversal which varies from wet season to dry season. Duringthe wet season,the Changjiang River estuary is totally dominated by energy from fresh water discharge.  相似文献   

5.
Clay mineral compositions of 199 offshore surface sediment samples collected from the Hangzhou Bay have been analyzed. The clay minerals in the sediments from the Hangzhou Bay are dominated by illite(58.7%, on average), followed by chlorite(20.3%), kaolinite(16.9%) and smectite(4.1%). Two provinces were classified by Q-mode cluster analysis. Class Ⅰ with relatively low amounts of illite and smectite is widely distributed in the Hangzhou Bay, especially concentrated in the top and mouth of the bay, and the northern and southern nearshore areas. Class Ⅱ with comparatively high amounts of illite and smectite is mainly concentrated in the central part of the bay with the water depth of 8–10 m. By comparing clay mineral compositions with the neighbouring regions, we can find that the sediments in the Hangzhou Bay are mainly influenced by the resuspension and repeated deposition of particles from the Yangtze River due to the strong dynamic environment. In particular, the clay fraction of Class Ⅰ is mainly supplied by the Yangtze River, while the sediments of Class Ⅱ are mixture of the clay minerals carried by the Yangtze River and Qiantang River. In general, the distributions of clay minerals in the northern bay are affected by Yangtze River runoff, coastal current and flood tide together, and in the southern they are mainly affected by the Qiantang River runoff and ebb tide.  相似文献   

6.
For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance. Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow.The streamflow during the dry season is extremely low compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently deterrnine the quantity and quality of the water parameters.The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential areas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.  相似文献   

7.
This study investigates the physical conditions (water depth, current speed, salinity, temperature) in Lianzhou Bay, a shallow coastal bay in southern China, during two expeditions in the dry and wet seasons of 2011. Based on these expedition data, basic hydrodynamic parameters like Brunt-Väisälä Frequency, Richardson Number, Rossby radius, and Resonance Period are calculated. The results show that Lianzhou Bay is characterized by comparatively small quantity of freshwater input and weak stratification. Strong tides, which are spatially uniform within the bay, cause turbulent mixing. Residence time of the water is shorter in winter due to a stronger coastal current in that season. Consideration of the water movement may help to reduce the harmful ecological impact of aquaculture waste water discharge.  相似文献   

8.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   

9.
Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 for Bao′an station, from 1955 to 2009 for Baoqing station, from 1956 to 2009 for Caizuizi station and from 1978 to 2009 for Hongqiling station. The influences of climate change and human activities on runoff change were investigated, and the causes of hydrological regime change were revealed. The seasonal runoff distribution of the Naoli River was extremely uneven, and the annual change was great. Overall, the annual runoff showed a significant decreasing trend. The annual runoff of Bao′an, Baoqing, and Caizuizi stations in 2009 decreased by 64.1%, 76.3%, and 84.3%, respectively, compared with their beginning data recorded. The wet and dry years of the Naoli River have changed in the study period. The frequency of wet year occurrence decreased and lasted longer, whereas that of dry year occurrence increased. The frequency of dry year occurrence increased from 25.0%-27.8% to 83.9%-87.5%. The years before the 1970s were mostly wet, whereas those after the 1970s were mostly dry. Precipitation reduction and land use changes contributed to the decrease in annual runoff. Rising temperature and water project construction have also contributed important effects on the runoff change of the Naoli River.  相似文献   

10.
于2008年5月(枯水期)和8月(丰水期),分别对黄河入海口潮间带大型底栖动物进行了野外调查与研究。结果表明,底栖动物生物量平均为177.23±55.56 g.m-2,软体动物占据绝对优势;各潮带丰水期底栖动物生物量较枯水期增加,且低潮带>中潮带>高潮带。底栖动物栖息密度平均为573.07±125.60 m-2,软体动物栖占据绝对优势,丰水期底栖动物栖息密度较枯水期升高。四角蛤蜊(Mactra veneriformis)、泥螺(Bullacta exarata)、双齿围沙蚕(Perinereis aibuhitensis)、彩虹明樱蛤(Moerella iridescens)、天津厚蟹(Helice tientsinensis)、青蛤(Cyclina sinensis)、豆形拳蟹(Philyra pisum)、光滑河蓝蛤(Potamocorbula laevis)、托氏昌螺(Umbonium thomasi)和短文蛤(Meretrix pethechialis)等种类的相对重要性指数值较高。  相似文献   

11.
INTRODUCTIONJiaozhouBayisashallowsemi closedbaywithtotalareaofabout 40 0km2 andaveragewaterdepthof7m .Themaximumwaterdepthisover 5 0matthecenterofthestraitconnectingtotheYellowSea.Thisstraitcenterwateriscalledbaymouthwater,thewaterinthenorthernpartofthestrai…  相似文献   

12.
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.  相似文献   

13.
We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%, −4.06% during spring tide, and 4.82%, 2.34%, −2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.  相似文献   

14.
Zhang  Yanwei  Liang  Xinfeng  Tian  Jiwei  Yang  Lifen 《中国海洋湖沼学报》2009,27(1):129-134
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean. Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)  相似文献   

15.
As a multi-branch estuary system, the Yangtze Estuary presents distinctive characteristics of hydrodynamic processes through co-action among river runoff, tides, wind-waves, and gravitational circulation. To study the pathways of flushing water along all of the estuary's branches and analyze their differences, especially those due to the influence of seawater intrusion and discharge variations, a free surface flow modeling suite TELEMAC-MASCARET involving passive tracers was applied to the Yangtze Estuary and the adjacent waters. The open boundary conditions were provided by the Nao.99 b model(Matsumoto et al., 2000), which was calibrated using observed velocity and salinity data obtained in March 2002. The water age, which was used as the diagnostic tool to study the flushing efficiency of the water body across the estuary, was solved by additional advection-diffusion-reaction equations implemented in the TELEMAC modeling system. The transport properties were investigated under different river discharge scenarios, which represented seasonal impacts; aspects relating to the influence of tide, surface wind stress, and density-induced circulation on age were also investigated. Model results showed that river runoff is one of the dominant factors influencing the spatial distribution of the mean age, while tidal force is another important factor. The horizontal freshwater age distribution demonstrated similarity compared with the salinity distribution; the vertical age distribution resembled the stratification pattern of salinity in all branches where stratification persists. An experimental numerical simulation of tracing saltwater age from the lower reaches of the estuary was conducted, and implicated the connectivity with transport processes of freshwater from upstream. Additionally, a particle tracking algorithm was used to analyze the dynamic characteristics of the four passages. The South Passage and South Channel were found to be significant as main water flow passages, while salinity intrusion in the North Branch was found to cause a return flow that partially joins the South Branch flushing water.  相似文献   

16.
The Distribution of Dissolved Aluminum in the Yellow and East China Seas   总被引:2,自引:0,他引:2  
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.  相似文献   

17.
Inter-tidal(subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al.(2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian in- ter-tidal concentration(LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is nu- merically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as ‘flat-bottom', ‘stairs' and ‘cape' case, re- spectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the ‘flat-bottom' case still meets the convectively weakly nonlinear condi- tion. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the de- pendence of the LIS(Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coast- lines, and that in the latter region is due to the presence of the estuarine salinity front.  相似文献   

18.
Using the latest version of Mesoscale Modeling System (MM5v3), we assimilated wind data from the scatterometer and built a model to assimilate the wind field over eastern China seas and adjacent waters and applied the wave model WAVEWATCH-Ⅲ to test the sea area with assimilative wind and blended wind of QSCAT and NCEP as driving forces. High precision and resolution numerical wave results were obtained. Analysis indicated that if we replace the model wind result with the blended wind, better sea surface wind results and wave results could be obtained.  相似文献   

19.
1Introduction GamakBay,anegg shapedseasurfaceareaofap proximately112km2,isasemi enclosedshallowwaterareawithameandepthof9mandhasbotheastandsouthchannelstoreceiveseawaterfromoutside(seeFig.1).Similarscalesoftidalwavesalmostsimultane ouslyenterorexitthrough…  相似文献   

20.
In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area. Supported by National Basic Research Program of China (973 Program, No. 2005CB422303 and 2007CB411804), the Key Project of the International Science and Technology Cooperation Program of China (No. 2006DFB21250), the “111 Project” of the Ministry of Education (No. B07036), the Program for New Century Excellent Talents in University, China (No. NECT-07-0781)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号