首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Atlantis Fracture Zone (30° N) is one of the smallest transform faults along the Mid-Atlantic Ridge with a spatial offset of 70 km and an age offset of ~ 6 Ma. The morphology of the Atlantis Fracture Zone is typical of that of slow-slipping transforms. The transform valley is 15–20 km wide and 2–4 km deep. The locus of strike-slip deformation is confined to a narrow band a few kilometers wide. Terrain created at the outside corners of the transform is characterized by ridges which curve toward the ridge-transform intersections and depressions which resemble nodal basins. Hooked ridges are not observed on the transform side of the ridge-transform intersections. Results of the three-dimensional inversion of the surface magnetic field over our survey area suggest that accretionary processes are sufficiently organized within 3–4 km of the transform fault to produce lineated magnetic anomalies. The magnetization solution further documents a 15-km, westward relocation of the axis of accretion immediately south of the transform about 0.25 Ma ago. The Atlantis Transform is associated with a band of high mantle Bouguer anomalies, suggesting the presence of high densities in the crust and/or mantle along the transform, or anomalously thin crust beneath the transform. Assuming that all the mantle Bouguer anomalies are due to crustal thickness variations, we calculate that the crust may be 2–3 km thinner than a reference 6-km thickness beneath the transform valley, and 2–3 km thicker beneath the mid-points of the spreading segments which bound the transform. Our results indicate that crustal thinning is not uniform along the strike of the fracture zone. Based on studies of the state of compensation of the transform, we conclude that the depth anomaly associated with the fracture zone valley is not compensated everywhere by thin crust. Instead, the regional relationship between bathymetry and gravity is best explained by compensation with an elastic plate with an effective thickness of ~ 4 km or greater. However, the remaining isostatic anomalies indicate that there are large variations away from this simple model which are likely due to variations in crustal thickness and density near the transform.  相似文献   

2.
High inside corners at ridge-transform intersections   总被引:1,自引:0,他引:1  
A large topographic high commonly occurs near the intersection of a rifted spreading center and a transform fault. The high occurs at the inside of the 90° bend in the plate boundary, and is called the high inside corner, while the area across the spreading center, the outside corner, is often anomalously low. To better understand the origin of this topographic asymmetry, we examine topographic maps of 53 ridge-transform intersections. We conclude the following: (1) High inside corners occur at 41 out of 42 ridge-transform intersections at slow spreading ridges, and thus should be considered characteristic and persistent features of rifted slow spreading ridges. They are conspicuously absent at fast spreading ridges or at spreading centers that lack a rift valley. (2) High inside corners occur wherever an axial rift valley is present, and an approximate 1:1 correlation exists between the relief of the rift valley and the magnitude of the asymmetry. (3) Large high inside corners occur at both long and short transform offsets. (4) High inside corners at long offsets decay off-axis faster than predicted by the square root of age cooling model, precluding a thermalisostatic origin, but consistent with dynamic or flexural uplift models.These observations support the existing hypothesis that the asymmetry is due to the contrast in lithospheric coupling that occurs in the active transform versus the inactive fracture zone. Active faulting in the transform breaks the lithosphere along a high angle fault, permitting vertical movement of the inside corner block, whereas the inactive fracture zone forms a weld that couples the outside corner to the adjacent block, preventing it from rising. Large asymmetry at very short transform offsets appears to be caused by the added effect of a second uplift mechanism. Young lithosphere in the rift valley couples to the older plate, and when it leaves the rift valley it lifts the older plate with it. At very short offsets, this coupled uplift acts upon the high inside corner; at long offsets, it may upwarp the older plate or its expression may be muted.  相似文献   

3.
The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (<200 m), highly fractured, and discontinuous carapace of volcanic rocks overlying a variably deformed and metamorphosed assemblage of gabbroic rocks. Overprinting relationships reveal a complex history of crustal extension and rapid vertical uplift. In contrast, the opposing flanks of the ridge axes, that intersect the non-transform zones appear to be similar in many respects to those examined elsewhere along slow-spreading ridges. In general, a near-axial horst and graben terrain floored by relatively young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non-transform zones a relatively younger section of lithosphere that formed at a ridge-non-transform corner is welded to an older, deformed section that initially formed at a ridge-transform corner.  相似文献   

4.
Bathmetric highs on the old crust proximal to ridge-transform intersections (RTIs), termed intersection highs, are common but poorly understood features at offsets of fast to intermediate rate spreading centers. We have combined new reflection seismic, photographic, and geochemical data with previously published Seabeam, SeaMARC I, and SeaMARC II data to address the nature of the intersection highs at the Clipperton Fracture Zone. The Clipperton Intersection Highs are both topped by a carapace of young lavas at least 100 m thick. These lavas, which were erupted on the intersection highs, are chemically similar to their adjacent ridge segments and different from the surrounding older crust. At least some of the erupted magma traveled directly from the adjacent ridge at a shallow crustal level. Ridge-related magma covers and intrudes at least the upper 500 m of the transform tectonized crust at the RTI. We suspect that additional magma enters the intersection highs from directly below, without passing through the ridge. The young oceanic crust near the western Clipperton RTI is not thin by regional comparison. The 1.4 m.y. old crust near the eastern Clipperton RTI thickens approaching the transform offset. If the thermal effects of the proximal ridge were negligible, the eastern intersection high crust would appear to be in isostatic equilibrium. We believe that thermal effects are significant, and that the intersection high region stands anomalously shallow for its crustal thickness. This is attributable to increased temperature in the mantle below the ridge-proximal crust. Although ridge magma is injected into the proximal old crust, plate boundary reorganization is not taking place. Intersection high formation has been an ongoing process at both of the Clipperton RTIs for at least the past 1 m.y., during which time the plate boundary configuration has not changed appreciably. We envision a constant interplay between the intruding ridge magma and the disrupting transform fault motion. In addition, we envision a nearly constant input of magma from below the high, as an extension of the magma supply to the ridge from the mantle. Because the proximal ridge profoundly affects the juxtaposed crust at the RTI, sea floor fabric along the aseismic extensions of this fast-slipping transform fault is primarily a record of processes at work at the RTI rather than a record of transform tectonism.  相似文献   

5.
6.
The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events. The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape. The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.  相似文献   

7.
A Seabeam reconnaissance of the 400 km-long fast-slipping (88 mm yr-1) Heezen transform fault zone and the 55 km-long spreading center that links it to Tharp transform defined and bathymetrically described several types of ridges built by tectonic uplift and volcanic construction. Most prominent is an asymmetric transverse ridge, at which abyssal hills adjacent to the fault zone have been raised 2–3 km above normal rise-flank depths. Topographic and petrologic evidence suggests that this uplift, which has produced a 5400 m scarp from the crest of the ridge to the floor of a 10 km-wide transform valley, is caused by rapid serpentinization of upper mantle which has been exposed to hydrothermal circulation by fault-zone fracturing of an unusually thin crust. Transverse ridges have been thought atypical of fast-slipping transforms. One class of volcanic ridge more common at these sites is the overshot ridge, formed by prolongation of spreading-center rift zones obliquely across the transform. Overshot ridges are well developed at Heezen transform, especially at the eastern end where an eruptive rift zone extending 60 km from the southern tip of the East Pacific Rise has built a transform-parallel ridge that fills the eastern transform valley. Obliteration of fault-zone structure by ridges overshooting from the spreading center intersections means that the topography of the aseismic fracture zones is not just inherited from that of the active transform fault zone. The latter has several en echelon and overlapping fault traces, linked by short oblique spreading axes that generally form pull-apart basins rather than volcanic ridges. Interpretation of the origin and pattern of the fault zone's tectonic and volcanic relief requires refinement of the plate geography and history of this part of the Pacific-Antarctic boundary, using new Seabeam and magnetic traverses to supplement and adjust the existing geophysical data base.  相似文献   

8.
Seven dives in the submersible ALVIN and four deep-towed (ANGUS) camera lowerings have been made at the eastern ridge-transform intersection of the Oceanographer Transform with the axis of the Mid-Atlantic Ridge. These data constrain our understanding of the processes that create and shape the distinctive morphology that is characteristic of slowly-slipping ridge-transform-ridge plate boundaries. Although the geological relationships observed in the rift valley floor in the study area are similar to those reported for the FAMOUS area, we observe a distinct change in the character of the rift valley floor with increasing proximity to the transform. Over a distance of approximately ten kilometers the volcanic constructional terrain becomes increasingly more disrupted by faulting and degraded by mass wasting. Moreover, proximal to the transform boundary, faults with orientations oblique to the trend of the rift valley are recognized. The morphology of the eastern rift valley wall is characterized by inward-facing scarps that are ridge-axis parallel, but the western rift valley wall, adjacent to the active transform zone, is characterized by a complex fault pattern defined by faults exhibiting a wide range of orientations. However, even for transform parallel faults no evidence for strike-slip displacement is observed throughout the study area and evidence for normal (dip-slip) displacement is ubiquitous. Basalts, semi-consolidated sediments (chalks, debris slide deposits) and serpentinized ultramafic rocks are recovered from localities within or proximal to the rift valley. The axis of accretion-principal transform displacement zone intersection is not clearly established, but appears to be located along the E-W trending, southern flank of the deep nodal basin that defines the intersection of the transform valley with the rift floor.  相似文献   

9.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   

10.
11.
A survey across the western intersection of the mid-Atlantic ridge with Oceanographer fracture zone near 35°N shows this intersection to be different in character from its more typical eastern counterpart. At the western junction the transform valley broadens into a parallelogram shaped deep some 46 by 24 km, which extends well across the trace of the active transform. Within 30 km south of the fracture zone the median valley becomes oblique forming a NE trending ridge which is the SE edge of the deep. Magnetic mapping shows the current spreading centre to be adjacent to this ridge.A sequence of evolution for this intersection over the past 0.7 Ma is proposed to explain the features mapped. We suggest that the oblique ridge crest trends extended across the transform trace to form the elongated graben-like deep with its associated faults and sediment slumps. Such complex patterns may occur as plate-wide changes in spreading direction become modified by localised shear stress fields at ridge crest-transform intersections, as have been observed in a number of other cases. The absence of significant tranverse ridges across from the spreading centre at this particular fracture zone intersection, may have temporarily allowed these stress patterns to propagate across the fracture zone.  相似文献   

12.
Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges, while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events. From 1996 to2003, the Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration(NOAA/PMEL) deployed several hydrophones in the eastern Pacific Ocean and the northern Atlantic Ocean.These hydrophones recorded earthquakes with small magnitudes, providing us with...  相似文献   

13.
High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.  相似文献   

14.
 Continent–ocean fracture zones are the fossil transform offsets located along passive rifted continental margins. Kinematic models identify at least two principal stages in their evolution. During the first stage as rifting proceeds, continent–continent shearing dominates a narrow region in which the transform fault will eventually rupture. High-standing continental marginal ridges 50–100 km wide and bounding deep sedimentary basins, are derived in such settings. In stage two as sea-floor spreading proceeds, the younger oceanic block slides along the active transform, heating the older continental block, and possibly induces thermal uplift and accompanying denudation. Magnetic injection into the continental block at depth may also induce an isostatic uplift. After ridge–transform intersection time, mechanical coupling between the continental and oceanic blocks may influence the stratigraphy and structure of these margins. Received: 12 March 1996 / Revision received: 23 April 1996  相似文献   

15.
A three-dimensional analysis of gravity andbathymetry data has been achieved along the Southwest Indian Ridge (SWIR)between the Rodriguez Triple Junction (RTJ) and the Atlantis II transform,in order to define the morphological and geophysical expression ofsecond-order segmentation along an ultra slow-spreading ridge(spreading rate of 8 mm/yr), and to compare it with awell-studied section along a slow-spreading ridge (spreadingrate of 12.5 mm/yr): the Mid-Atlantic Ridge (MAR) between 28°and 31°30 N.Between the Atlantis II transform and theRTJ, the SWIR axis exhibits a deep axial valley with an 30°oblique trend relative to the north–south spreading direction. Onlythree transform faults offset the axis, so the obliquity has to beaccommodated by the second-order segmentation. Alongslow-spreading ridges such as the MAR, second-order segmentshave been defined as linear features perpendicular to the spreadingdirection, with a shallow axial valley floor at the segment midpoint,deepening to the segment ends, and are associated with Mantle BouguerAnomaly (MBA) lows. Along the SWIR, our gravity study reveals the presenceof circular MBA lows, but they are spaced further apart than expected. Thesegravity lows are systematically centred over narrow bathymetric highs, andinterpreted as the centres of spreading cells. However, along some obliquesections of the axis, the valley floor displays small topographicundulations, which can be interpreted as small accretionary segments frommorphological analysis, but as large discontinuity domains from thegeophysical data. Therefore, both bathymetry and MBA variations have to beused to define the second-order segmentation of an ultraslow-spreading ridge. This segmentation appears to be characterisedby short segments and large oblique discontinuity domains. Analysis of alongaxis bathymetric and gravimetric profiles exhibits three different sectionsthat can be related to the thermal structure of the lithosphere beneath theSWIR axis.The comparison between characteristics of segmentationalong the SWIR and the MAR reveals two major differences: first, the poorcorrelation between MBA and bathymetry variations and second, the largerspacing and amplitude of MBA lows along the SWIR compared to the MAR. Theseobservations seem to be correlated with the spreading rate and the thermalstructure of the ridge. Therefore, the gravity signature of the segmentationand thus the accretionary processes appear to be very different: there areno distinct MBA lows on fast-spreading ridges, adjacent ones on slowspreading ridges and finally separate ones on ultra slow-spreadingridges. The main result of this study is to point out that 2nd ordersegmentation of an ultra slow-spreading ridge is characterised bywide discontinuity domains with very short accretionary segments, suggestingvery focused mantle upwelling, with a limited magma supply through a cold,thick lithosphere. We also emphasise the stronger influence of themechanical lithosphere on accretionary processes along an ultra slow-spreading ridge.  相似文献   

16.
In 1994, a joint Japanese-American dive program utilizing the worlds deepest diving active research submersible (SHINKAI 6500) was carried out at the western ridge-transform intersection (RTI) of the Mid-Atlantic Ridge and Kane transform in the central North Atlantic Ocean. A total of 15 dives were completed along with surface-ship geophysical mapping of bathymetry, magnetic and gravity fields. Dives at the RTI traced the neovolcanic zone up to, and for a short distance (2.5 km) along, the Kane transform. At the RTI, the active trace of the transform is marked by a narrow valley (<50 m wide) that separates the recent lavas of the neovolcanic zone from the south wall of the transform. The south wall of the transform at the western RTI consists of a diabase section near its base between 5000 and 4600 m depth overlain by basaltic lavas, with no evidence of gabbro or deeper crustal rocks. The south wall is undergoing normal faulting with considerable strike-slip component. The lavas of the neovolcanic zone at the RTI are highly magnetized (17 A m–1) compared to the lavas of the south wall (4 A m–1), consistent with their age difference. The trace of the active transform changes eastwards into a prominent median ridge, which is composed of heavily sedimented and highly serpentinized peridotites. Submersible observations made from SHINKAI find that the western RTI of the Kane transform has a very different seafloor morphology and lithology compared to the eastern RTI. Large rounded massifs exposing lower crustal rocks are found on the inside corner of the eastern RTI whereas volcanic ridge and valley terrain with hooked ridges are found on the outside corner of the eastern RTI. The western RTI is much less asymmetric with both inside and outside corner crust showing a preponderance of volcanic terrain. The dominance of low-angle detachment faulting at the eastern RTI has resulted in a seafloor morphology and architecture that is diagnostic of the process whereas crust formed at the WMARK RTI must clearly be operating under a different set of conditions that suppresses the initiation of such faulting.  相似文献   

17.
Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00 N and 30°40 N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.  相似文献   

18.
东南印度洋脊(Southeast Indian Ridge, 简称SEIR)是中速扩张洋中脊, 在其中的108°—134°E区域的全扩张速率为72~76 mm·a -1。但在接近澳大利亚-南极洲不整合带(Australian-Antarctic Discordance, 简称AAD)区内, 海底地貌沿洋中脊的变化强烈, 其变化范围涵盖了从慢速到快速扩张洋中脊上常见的例子, 且出现了明显的地球物理与地球化学异常, 说明洋中脊在AAD区附近的岩浆供应量极不均匀。文章定量分析了高精度多波束测深数据, 计算了洋中脊不同段的地形坡度、断层比例以及平面与剖面的岩浆参数M值, 结合研究区内剩余地幔布格重力异常以及洋中脊轴部地球化学指标Na8.0、Fe8.0等资料, 分析与讨论了研究区的断层构造与岩浆活动特征的关系。研究发现, 东南印度洋脊108°—134°E区域的B区(在AAD区内)及C5段(在AAD区外西侧)发育有大量的海洋核杂岩, 而且B区的海洋核杂岩单体规模更大, 其中最大的位于B3区, 沿洋中脊扩张方向延伸约50km。研究结果首次系统性地显示, 相比东南印度洋的其他区域, B和C5异常区具有偏低的平面与剖面M值、偏高的断层比例、偏正的地幔布格重力异常以及偏高的Na8.0值与偏低的Fe8.0值, 这些异常特征可能反映了B区和C5段的岩浆初始熔融深度较浅以及岩浆熔融程度较低, 因此导致其岩浆供应量异常少, 形成较薄的地壳。研究结果同时表明, 在岩浆供应量极少的洋中脊, 构造伸展作用有利于海洋核杂岩的发育, 导致地壳进一步减薄。  相似文献   

19.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   

20.
Gallo  D. G.  Kidd  W. S. F.  Fox  P. J.  Karson  J. A.  Macdonald  K.  Crane  K.  Choukroune  P.  Seguret  M.  Moody  R.  Kastens  K. 《Marine Geophysical Researches》1984,6(2):159-185
During the Fall of 1979, a manned submersible program, utilizing DSRV ALVIN, was carried out at the intersection of the East Pacific Rise (EPR) with the Tamayo Transform boundary. A total of seven dives were completed in the vicinity of the EPR/Tamayo intersection depression and documented the geologic relationships that characterize the juxtaposition of these types of plate boundaries. The young volcanic terrain of the EPR axis can be traced into and across the Tamayo Transform valley but becomes buried by sedimentary talus that is being shed from sediment scarps along the unstable sediment slope that defines the north side of the intersection depression. Within 4 km of the transform boundary, the dominant trend (000°) of the fissures and faults that disrupt the rise-generated volcanics is markedly oblique to the regional direction of sea floor spreading (120°). Since no evidence was found to suggest that these structures accommodate significant amounts of strike-slip displacement, they are taken to reflect a distortion of the EPR extensional tectonic regime by a transform generated shear couple. The floor of the Tamayo Transform valley in this area is inundated by mass-wasted sediment, and the principal transform displacement zone is characterized at the surface by a narrow (<1.5 km) interval of fault scarps in sediment that trends parallel with the transform valley. Extrapolated to the west, this zone links with zones of transform deformation investigated during earlier submersible studies (CYAMEX and Pastouret, 1981). Evidence of low-level hydrothermal discharge was seen at one locality on the EPR axis and at another 8 km west of the axis at the edge of the zone of transform deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号