首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
K‐Ar ages of authigenic illite from two drill‐core gouge samples of a fault in the Palaeoproterozoic basement of Finland record two distinct faulting events. The older sample yields apparent ages from 1240 ± 26 to 1006 ± 21 Ma for four grain size fractions between 6 and <0.1 μm. The second sample is structurally younger and yields statistically distinct ages ranging from 978 ± 20 to 886 ± 18 Ma. We interpret the ages of the <0.1 m fractions, which are the youngest, as representing the actual time of faulting. XRD analysis and age modelling exclude significant age contamination of the finest dated fractions with inherited host rock components. These results provide therefore an example of meaningful isotopic dating of illite‐type clay material formed during Precambrian faulting, demonstrate and constrain fault reactivation and give evidence for brittle Sveconorwegian Mesoproterozoic shortening and Neoproterozoic extension in Fennoscandia.  相似文献   

2.
K-Ar Dating of Fault Gouges from the Red River Fault Zone of Vietnam   总被引:1,自引:0,他引:1  
Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.  相似文献   

3.
Structural data as well as U–Pb zircon and 40Ar/39Ar biotite and muscovite ages were collected from the Rolvsnes granodiorite in western Norway. The granodiorite intruded at c. 466 Ma, cooled quickly and escaped later viscous deformation. Brittle top‐to‐the‐NNW thrust faults (Set I) and WNW–ESE striking dextral strike‐slip faults (Set II) formed in a NNW–SSE transpressional regime. 40Ar/39Ar dating of synkinematic mica from both sets reveals a c. 450 Ma (Late Ordovician) age of faulting, which constrains early‐Caledonian brittle deformation. Set I and II faults are overprinted by a set of lower‐grade, variably oriented chlorite‐ and epidote‐coated faults (Set III) constraining WNW–ESE shortening. A lamprophyric dyke oriented compatibly with this stress field intruded at c. 435 Ma (Silurian), indicating that Set III formed at the onset of the Scandian Baltica–Laurentia collision. The preservation of Caledonian brittle structures indicates that the Rolvsnes granodiorite occupied a high tectonic level throughout the Caledonian orogeny.  相似文献   

4.
We used the K–Ar ages of clay-sized mineral grains to investigate the timing of activity on the Minami-Awa Fault, which is a fossil seismogenic fault along a subducting plate interface separating the coherent strata of the Shimanto accretionary complex to the north from the tectonic mélange to the south. The K–Ar ages from the matrix shale of the mélange range from 85 to 48 Ma and decrease with decreasing amount of detrital mica, indicating that they record a mixture of authigenic illite related to burial diagenesis and detrital mica. In contrast, the K–Ar ages of an ultracataclasite within the fault core are significantly younger, ranging from 29 to 23 Ma, and are unrelated to grain size and amount of detrital mica. This indicates that s Ar diffused completely from the ultracataclasite between 29 and 23 Ma, which postdates the formation of authigenic illite by at least several million years. The diffusion of 40Ar in the ultracataclasite was probably caused by frictional heating or high-temperature fluid migration that occurred when the fault was reactivated. The results indicate that seismogenic faults that separate tectonic mélange from coherent strata in accretionary complexes may slip, not only during accretion, but also long after accretion.  相似文献   

5.
Structural studies in the Sydney region have revealed the presence of vertical to near-vertical, north-northeast-striking faults that are manifest as joint swarms and highly brecciated zones in which gouge of varying thickness is developed. Strike-slip movement accompanied by minor dip-slip, normal movement occurred on these faults. Timing of movement on these faults by K–Ar dating of illite and illite–smectite in fractions extracted from fault gouges, was attempted. These dates were compared with dates obtained from the host-rocks. K–Ar ages determined from the 2–10 μm to <0.1 μm fractions produced from the gouge and host-rocks, range from 159.5 ± 3.2 to 106.6 ± 2.1 Ma (n = 26). In <0.5 μm fractions extracted from the gouges that are less contaminated by detrital phases, K–Ar ages vary from 138 ± 4.4 to 106.5 ± 2.1 Ma (mean 121 Ma; n = 6) which are similar to ages obtained from host-rocks in the Sydney region. The similarity in age between the host rocks and gouge suggests that the K–Ar system has been reset. The resetting is attributed to a thermal event at ca 120 Ma related to the underplating of felsic intrusions associated with early stages of breakup of East Gondwana. Subsequent to this event, dykes of Early Eocene age (K–Ar whole-rock: 51.0 ± 1.1 Ma) exploited north-northeast-striking faults and subsequently developed brecciated margins. These observations and the fact that gouge formed before the thermal event suggests that movement took place on north-northeast-striking faults prior to 120 Ma and after 51 Ma.  相似文献   

6.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

7.
The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the ~(40)Ar/~(39)Ar step wise heating method. The age spectra, ~(39)Ar recoil loss and their controlling factors were investigated systematically. The ~(40)Ar/~(39)Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated ~(40)Ar/~(39)Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the ~(39)Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated ~(39)Ar recoil losses in this study are in the range from 7% to 51%. The ~(39)Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant ~(39)Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. ~(39)Ar recoil losses during ~(40)Ar/~(39)Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs.  相似文献   

8.
In the Ordos basin, two distinct thermal events of different ages have been identified for the first time by means of K-Ar dating combined with illite crystallinity analysis. For the Late Triassic and Late Permian samples, the K-Ar ages of the < 0.2μm fractions (159-173 Ma) reflect an illitization age related to the Yanshanian movement and indicate a short thermal event in the Middle Jurassic; the K-Ar ages of the <2 μm fractions (210-308 Ma) are interpreted as mixed ages of detrital material and authigenic illites. The K-Ar ages of both < 0.2μm and < 2μm fractions of a Middle Cambrian sample (368 Ma and 419 Ma) correspond to the ages of the metamorphism and earliest granite intrusion in the northern Caledonian Qinling fold zone (380-420 Ma) and show a thermal event during Silurian-Devonian time.  相似文献   

9.
Understanding convergent margin processes requires determination of the onset and the termination of subduction, the duration of subduction‐zone metamorphism, and the subduction zone polarity. Garnet growth and intracrystalline zonation can be used to constrain the timing, duration and kinetics of tectonometamorphic processes. An eclogite from the Huwan shear zone in the Hong'an orogen was investigated with combined pseudosection analysis and multiple geochronologies. The pseudosection analysis illustrates that garnet growth is continuous and along an early near‐isothermal trajectory followed by a near‐isobaric heating path from 1.9 GPa/500 °C to 2.4 GPa/575 °C and subsequent near‐isothermal decompression. 40Ar/39Ar dating of an amphibole inclusion in garnet from the eclogite yielded an age of 310 ± 5 Ma, which is consistent with a U–Pb age of 305 ± 3 Ma for the metamorphic zircon within uncertainty. Garnet core and rim material produced Lu–Hf ages of 296.9 ± 3.8 and 256.9 ± 3.9 Ma respectively; the latter is consistent with its Sm–Nd age of 254.3 ± 4.6 Ma for the same aliquots. Similarly, limited zircon U–Pb ages of c. 257 Ma were obtained in zircon rims with garnet inclusions. These ages were interpreted to bracket the period of garnet growth and the difference of up to c. 40 Ma is best explained by protracted garnet growth. We propose that the rocks represent detachment of part of the downgoing slab and remained free of significant compression/decompression or heating/cooling close to the subduction channel, most likely underplating the mantle wedge, for a long time. These rocks were incorporated into the following subduction channel due to the successive entry of the buoyant materials, and exhumed at some time later than c. 254 Ma. The increasing observations of protracted garnet growth and long‐lived subduction in various orogens worldwide demand more sophisticated geodynamic models.  相似文献   

10.
The Attic‐Cycladic crystalline belt in the central Aegean region records a complex structural and metamorphic evolution that documents Cenozoic subduction zone processes and exhumation. A prerequisite to develop an improved tectono‐metamorphic understanding of this area is dating of distinct P–T–D stages. To evaluate the geological significance of phengite ages of variably overprinted rocks, 40Ar/39Ar and Rb–Sr analyses were undertaken on transitional blueschist–greenschist and greenschist facies samples from the islands of Syros and Sifnos. White mica geochronology indicates a large age variability (40Ar/39Ar: 41–27 Ma; Rb–Sr: 34–20 Ma). Petrologically similar samples have either experienced greenschist facies overprinting at different times or variations in ages record variable degrees of greenschist facies retrogression and incomplete resetting of isotopic systematics. The 40Ar/39Ar and Rb–Sr data for metamorphic rocks from both islands record only minor, localized evidence for Miocene ages (c. 21 Ma) that are well documented elsewhere in the Cyclades and interpreted to result from retrogression of high‐pressure mineral assemblages during lower pressure metamorphism. Field and textural evidence suggests that heterogeneous overprinting may be due to a lack of permeability and/or limited availability of fluids in some bulk compositions and that retrogression was more or less parallel to lithological layering and/or foliation as a result of, possibly deformation‐enhanced, channelized fluid ingress. Published and new 40Ar/39Ar and Rb–Sr data for both islands indicate apparent age variations that can be broadly linked to mineral assemblages documenting transitional blueschist‐to‐greenschist‐ and/or greenschist facies metamorphism. The data do not record the timing of peak HP metamorphism, but may accurately record continuous (partial) resetting of isotopic systematics and/or (re)crystallization of white mica during exhumation and greenschist facies retrogression. The form of 40Ar/39Ar phengite age spectra are complex with the lowest temperature steps yielding Middle to Late Miocene ages. The youngest Rb–Sr ages suggest maximum ages of 20.6 ± 0.8 Ma (Syros) and 22.5 ± 0.6 Ma (Sifnos) for the timing of greenschist facies overprinting. The results of this study further accentuate the challenges of interpreting isotopic data for white mica from polymetamorphic terranes, particularly when mixing of populations and/or incomplete resetting of isotopic systematics occurs during exhumation. These data capture the full range of isotopic age variations in retrogressed HP rocks documented in previous isotopic studies, and can be interpreted in terms of the geodynamic evolution of the Aegean.  相似文献   

11.
K–Ar dating was applied on authigenic potassic minerals which are abundant in sandstones from the south of the Sanfranciscana Basin, Western Minas Gerais State, central Brazil. The Quintinos Member fluvial sandstones (Três Barras Formation, Areado Group) contain significant amounts of authigenic K‐feldspar as microcrystals of adularia and sanidine habits. The ages of these microcrystals cluster into three groups: 106.1 ± 2.2, 89.9 ± 1.9 and 88.8 ± 1.8 Ma (from Albian to Coniacian). The older age of 106.1 ± 2.2 Ma was obtained from the coarse fraction analysed (10–20 µm) that can contain a mixture of detrital potassic minerals (K‐feldspar, muscovite, biotite and illite) and different authigenesis of K‐feldspar (overgrowths and microcrystals). Thus, only the younger ages were interpreted as precipitation of K‐feldspar microcrystals during the Late Cretaceous into the Quintinos Member sandstones. Moreover, these ages can document the formation of microcrystals within a few million years after deposition of the sandstones. The ages of authigenic illite from the Capacete Formation epiclastic sandstones (Mata da Corda Group) range from 88.5 ± 1.9 to 71.5 ± 1.9 Ma (Coniacian–Campanian). These results suggest the timing of the illitization event in these sandstones as well as a synchrony with K‐feldspar authigenesis in the Quintinos Member sandstones. These results are well constrained and are in agreement with stratigraphic, biostratigraphic and radiometric ages previously reported for the Sanfranciscana Basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

13.
High‐precision 232Th–208Pb dates have been obtained from allanite porphyroblasts that show unambiguous microstructural relationships to fabrics in a major syn‐metamorphic fold in the SE Tauern Window, Austria. Three porphyroblasts were analysed from a single garnet mica schist from the Peripheral Schieferhülle in the core of the Ankogel Synform, one of a series of folds which developed shortly before the thermal peak of Alpine epidote–amphibolite facies metamorphism: allanite grain 1 provided two analyses with a combined age of 27.7 ± 0.7 Ma; grain 2, which was slightly bent and fractured during crenulation, provided two analyses with a combined age of 27.7 ± 0.4 Ma; a single analysis from grain 3, which overgrew an already crenulated fabric, gave an age of 28.0 ± 1.4 Ma. The five 232Th–208Pb ages agree within error and define an isochron with an age of 27.71 ± 0.36 Ma (95% confidence level; MSWD = 0.46). The results imply that the crenulation event was in progress in a short interval (<1 Ma) c. 28 Ma, and that the Ankogel Synform was forming at this time. The thermal peak of regional metamorphism in the SE Tauern Window was probably attained shortly after 28 Ma, only c. 5 Ma after eclogite facies metamorphism in the central Tauern Window. Metasediment may contain allanite porphyroblasts with clear‐cut microstructural relationships to fabric development and metamorphic crystallization; for such rocks, 232Th–208Pb dating on microsamples offers a powerful geochronological tool.  相似文献   

14.
While the offshore post‐Caledonian extensional history of the north Norwegian passive margin is well constrained, the tectonic relationship between onshore and offshore regions is less clear because of limited age constraints on the timing of rifting onshore. 40Ar/39Ar dating of K‐feldspar from hydrothermally altered fault rocks in a Precambrian gneiss complex in northern Norway was used to study the timing of extensional faulting onshore. In addition, 40Ar/39Ar dating of K‐feldspar from the host rock provided insight into the regional rock cooling history prior to brittle deformation. Results indicated a dominant Late Permian–Early Triassic (~265–244 Ma) faulting event and found no evidence for later reactivation, which has been documented offshore. The region cooled to below the closure temperature for 40Ar/39Ar K‐feldspar in the Carboniferous to Early Permian, prior to the main brittle faulting event. 40Ar/39Ar dating of fault zone K‐feldspar products provided a means to date brittle faulting events.  相似文献   

15.
Several analytical studies performed on alluvial-eolian sandstones of the Early Paleozoic Guaritas Allogroup (Camaquã Basin, southern Brazil) indicate illite to be abundant, showing different morphologies as authigenic grain rims and pore-bridging filaments. Authigenic illite separates of variable grain sizes from distinct stratigraphic intervals of the Guaritas Allogroup yielded 40K–40Ar ages from 521.7 ± 10.3 to 473.7 ± 9.4 Ma. These ages, interpreted to record the timing of illite authigenesis, are coincident with the age of emplacement of the Rodeio Velho andesites (470 ± 19 Ma). Moreover, field structures suggest interaction between hot, andesite lava flows and wet, poorly consolidated sediments of the Pedra Pintada Alloformation (lower strata of the Guaritas Allogroup). This set of data indicates that the Rodeio Velho volcanism could have been responsible for a widespread remobilization of interstitial fluids and consequent authigenic illite precipitation in the sandstones of the Guaritas Allogroup.  相似文献   

16.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

17.
This study presents new 40Ar/39Ar ages on the volcanic and intrusive rocks from the Papandayan metallic district in West Java, Indonesia. The vein system in the Arinem area, one of the prospective areas in the district, has been considered as an epithermal gold–silver–base metal deposit, however, no published age results are available for the host volcanic rocks in the district. The ages of these rocks are critical in terms of their association with mineralization and are important to understand the evolution of volcanism in the region, which has implications for mineral exploration in the district. 40Ar/39Ar plateau ages of two typical basalt and one andesite samples of the Jampang Formation volcanic rocks yielded ages of 11.65 ± 0.52 Ma, 18.15 ± 0.46 Ma and 7.69 ± 0.05 Ma, respectively. 40Ar/39Ar ages of three intrusive rock samples from Gunung Halang diorite, Gunung Lingga diorite, and Gunung Buligir fine‐grained quartz diorite yielded ages of 12.98 ± 0.20 Ma, 10.81 ± 0.15 Ma, and 7.37 ± 0.05 Ma, respectively. The age of the youngest fine‐grained diorite (Gunung Wayang dike) is 3.95 ± 0.03 Ma. An 40Ar/39Ar age obtained from adularia in the Arinem mineralized vein (18.30 ± 0.20 Ma) is older than the age of altered basalt sample of this study (11.65 ± 0.52 Ma) and the K–Ar illite ages of the Arinem vein (9.4 ± 0.3 Ma and 8.8 ± 0.3 Ma) which resulted from a previous study. The age results suggest that the Papandayan district may have experienced multiple hydrothermal and mineralization events. This study, therefore, provides crucial age data to support future mineral exploration in the district.  相似文献   

18.
The occurrence of synkinematic and authigenic clay minerals is a common feature in fault gouges. Few attempts have been made to date fault gouges. We present the first age data in Australia for synkinematic illite–smectite growth in two fault zones of the northern Sydney Basin, NSW. The faults occur at Burwood Beach, NSW in the northern part of the Sydney Basin and are hosted by Early Permian siltstones, tuffs and coals of the Lambton Formation, Newcastle Coal Measures. The faults are 1.5 m apart, show normal displacement and trend N–S with steep easterly dips. Foliated gouge zones, comminution and dilational breccias are developed along both fault surfaces. K–Ar ages extracted from samples in the gouge and tuffs in the damage zones are 172 (6–10 μm) to 119 Ma (<0.4 μm), respectively. Older ages of 272–281 Ma for the coarse fractions (>2 μm), 237–245 Ma for the <2 μm fraction, 218 Ma for the <0.4 μm fraction and 196 Ma for the <0.1 μm fraction have been obtained from siltstones within and outside the damage zone. We believe the younger ages of 196–237 Ma indicate the time at which diagenetic illite–smectite formed and the 122–150 Ma dates from the <2 μm fraction represent the maximum age of gouge formation. The younger ages are thought to reflect the last slip event occurring on the faults, which is related to the rifting and dispersal of the eastern margin of the Australian continent.  相似文献   

19.
Geochronological data, combined with field and petrological evidence, constrain the timing and rate of near‐isothermal decompression at granulite facies temperatures in rocks from the Lützow‐Holm Complex of East Antarctica. Granulite facies gneisses from Rundvågshetta in Lützow‐Holm Bay experienced a peak metamorphic temperature of over 900 °C at c. 11 kbar, as evidenced by primary orthopyroxene–sillimanite‐bearing assemblages, and secondary cordierite–sapphirine‐bearing assemblages in metapelites. Peak metamorphic assemblages show strong preferred mineral orientation, interpreted to have developed synchronously with pervasive ductile deformation. Zircon from a syndeformational leucosome has a U–Pb age of 517±9 Ma, which is interpreted as a melt crystallization age. This age provides the best estimate of the time of peak metamorphic conditions. The post‐peak metamorphic history is characterized by near‐isothermal decompression, recorded by mineral textures in a variety of rock compositions. Field and textural relations indicate that decompression post‐dated pervasive ductile deformation. K/Ar and 40Ar/39Ar ages from hornblende and biotite represent closure ages during cooling subsequent to decompression, and indicate cooling to temperatures between c. 350 and 300 °C by c. 500 Ma, thus placing a lower time limit on the duration of the high‐temperature isothermal decompression episode. The combination of the zircon age from a syndeformational melt with K/Ar and 40Ar/39Ar closure ages indicates that near‐isothermal decompression from c. 11 to c. 4 kbar at granulite facies temperatures, followed by cooling to c. 300 °C, took place within a time interval of 20±10 Myr. Simple one‐dimensional models for exhumation‐controlled cooling indicate that these data require exhumation rates of the order of c. 3 km Myr?1 for several million years, then cessation of exhumation followed by relatively isobaric cooling during thermal re‐equilibration.  相似文献   

20.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号