首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太阳系早期的短寿期放射性核素   总被引:2,自引:0,他引:2  
徐伟彪 《天文学报》2003,44(3):231-239
较详细地介绍全新的太阳系起源理论——X-wind模式,天体化学实验发现太阳系早期存在大量的短寿期放射性核素(半衰期小于100Ma),这些核素对太阳系的形成和演化有重要的影响,一种理论认为,这些核素是在恒星内部合成,并由星风注入原太阳分子云,星风产生的激波诱发分子云核的塌缩而形成原太阳,另一种理论认为,这些核素是高能粒子与原太阳分子云或太阳星云中的气体和尘埃相互作用的产物。  相似文献   

2.
We consider four possible scenarios relating the proto-solar cloud to the “last-minute” supernova presumed responsible for the isotopic anomalies in Allende and other meteorites. The probability that a chance supernova occurred close enough to an already-collapsing proto-solar cloud to inject sufficient matter is extremely small, even if the Sun formed in a region of enhanced supernova activity such as Orion OB1. The ambient level of 26Al inside a molecular cloud in Orion is also apparently too low to account for the meteorite data, unless the supernova ejecta accumulates at the edges of the cloud and star formation occurs there preferentially. Two modes of supernova-induced star formation are discussed. In one, the supernova shock collapses a preexisting cloud; in the other, stars form within the snowplow shell of the supernova. Canis Major R1 and Monoceros R1 are possible present-day examples of such star formation regions.  相似文献   

3.
This is a discussion and personal views on current important topics and methods in solar system dynamics. The topics include dynamical models, orbit resonance, planetary rings, chaos and secular evolution, motion of near-earth asteroids, the Kuiper belt, gravitational theory of the solar system and other related problems.  相似文献   

4.
Rapid accretion of matter takes place while the solar system resides in a dark cloud of high density. The mass thus accreted may be comparable to the mass of the planetary system. Since the elemental abundances in a dark cloud are considered to be heterogeneous due to matter processed inside stars and then ejected, the continual accretion causes elemental heterogeneities in the solar system.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

5.
A theory for the origin and bulk chemical composition of the Galilean satellites is presented — to coincide with the start of the 2-year orbital tour of this satellite system by the Galileo Orbiter. The theory is based on the author's modern Laplacian theory of solar system origin (Prentice 1978a). The nub of the work reported here is that the Jupiter system is indeed a miniature planetary system that formed by much the same physical and chemical processes that were responsible for the condensation of the sun's own family of planets. In particular, a phenomenon of supersonic turbulent convection which I claim caused the proto-solar cloud to rid excess spin angular momentum, by shedding a concentric family of orbiting gas rings at the present planetary orbits, may also have operated with similar effect within the proto-Jovian cloud.Several predictions are made for the bulk chemical composition and physical structure of the icy Galilean satellites which, it is hoped, can be tested by the Galileo Orbiter. The mean density of Callisto is consistent with that of a chemically homogeneous body consisting of about 50% rock, 45% water ice, and 5% ammonia ice, incorporated as the hydrate NH3·H2O. Such a higher-than-solar mass abundance ratio of rock to ice arises naturally within the proto-Jovian cloud since (i) only 34% of the available H2O vapor within the gas ring shed by the proto-solar cloud at Jupiter's orbit was condensed in solid form, and (ii) gravitational sedimentation of solids onto the mean orbit of the proto-solar gas ring leads to an enhancement in the heavy element fraction of the captured primitive Jovian atmosphere. All in all, I predict Jupiter's primitive atmosphere to be enhanced by a factor en 2 in its rock mass fraction (including S) and by a factor 1.3 in its water content, relative to solar abundances. NH3 and CH44 are present in almost solar proportions.Initially, Ganymede consisted of a chemically uniform mixture of rock and water ice in the proportions 0.524 : 0.476. The observed mean density of this satellite, however, lies midway between the mean densities expected for homogeneous and fully differentiated rock/ice bodies. The calculations presented here suggest that this body is about half-differentiated. I predict that the Galileo Orbiter will find the mean axial moment-of-inertia factor of Ganymede to be 0.35 ± 0.01.The circum-Jovian gas ring from which Europa condensed had a temperature of 302 K and a mean orbit gas pressure of 2.8 bar. Initially, this satellite consisted of a uniform mix of hydrated rocks, of which brucite Mg(OH)2 was the principal constituent. The observed mean density of Europa coincides with that expected for this mix, provided that its 9.4% native H2O content is now fractionated from the rock and resides at the satellite surface, forming a frozen mantle some 155 km thick. Regretfully, the mean density of Io cannot be matched by the solid composition reported here. Perhaps this satellite has a molten interior.  相似文献   

6.
A.G.W. Cameron  J.W. Truran 《Icarus》1977,30(3):447-461
It is suggested that the explosion of a Type II supernova triggered the collapse of a nearby interstellar cloud and led to the formation of the solar system. Estimates of the abundances resulting from nuclear processing of the supernova ejecta are presented. It appears promising that nucleosynthesis in this single supernova event can account for most isotopic anomalies and traces of extinct radioactivities in solar system material.  相似文献   

7.
Using a complete non-local convection theory, we carried out the theoretical calculations of 7Li depletion of the solar convective envelope models with different convective parameters c1 and c2, and got a model of the solar convection zone consistent with the observed 7Li abundance and the depth of the solar convection zone determined by helioseismic techniques. The overshooting distance of effective non-local convective mixing of 7Li is very extensive, which is about 1.07HP or 0.09R. However, the super-radiative temperature zone is much narrower, and it is only 0.20HP or 0.016R.  相似文献   

8.
The formation of the solar nebula and the distribution of mass in its planetary system is studied. The underlying idea is that the protosun, fragmented out from an interstellar cloud as a result of cluster formation, gathered the planetary material and, hence, spin angular momentum by gravitational accretion during its orbital motion around the centre of the Galaxy. The study gives the initial angular momentum of the solar nebula nearly equal to the present value of the solar system.  相似文献   

9.
Collisions between planetesimals were common during the first approximately 100 Myr of solar system formation. Such collisions have been suggested to be responsible for thermal processing seen in some meteorites, although previous work has demonstrated that such events could not be responsible for the global thermal evolution of a meteorite parent body. At this early epoch in solar system history, however, meteorite parent bodies would have been heated or retained heat from the decay of short‐lived radionuclides, most notably 26Al. The postimpact structure of an impacted body is shown here to be a strong function of the internal temperature structure of the target body. We calculate the temperature–time history of all mass in these impacted bodies, accounting for their heating in an onion‐shell–structured body prior to the collision event and then allowing for the postimpact thermal evolution as heat from both radioactivities and the impact is diffused through the resulting planetesimal and radiated to space. The thermal histories of materials in these bodies are compared with what they would be in an unimpacted, onion‐shell body. We find that while collisions in the early solar system led to the heating of a target body around the point of impact, a greater amount of mass had its cooling rates accelerated as a result of the flow of heated materials to the surface during the cratering event.  相似文献   

10.
We discuss the out-of-ecliptic component of the interplanetary dust cloud and its relation to the other small bodies in the solar system. The determination of the mass loss of comets, so far is quite uncertain and doesn't allow a finite study of the mass input to the dust cloud. However it is shown, that the dust particles in the inner solar system, i.e. within the earth orbit are most probable produced from a collisional evolution of larger, meteoroid, fragments of cometary origin. A further component of interstellar dust is especially important in the outer solar system and perhaps for the collisional evolution of the small bodies.  相似文献   

11.
Abstract— We demonstrate that a massive asymptotic giant branch (AGB) star is a good candidate as the main source of short‐lived radionuclides in the early solar system. Recent identification of massive (4–8 M⊙) AGB stars in the galaxy, which are both lithium‐ and rubidium‐rich, demonstrates that these stars experience proton captures at the base of the convective envelope (hot bottom burning), together with high‐neutron density nucleosynthesis with 22Ne as a neutron source in the He shell and efficient dredge‐up of the processed material. A model of a 6.5 M⊙ star of solar metallicity can simultaneously match the abundances of 26Al, 41Ca, 60Fe, and 107Pd inferred to have been present in the solar nebula by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of the short‐lived nuclides and consolidation of the first meteorites equal to 0.53 Myr. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. It is usually argued that it is unlikely that the short‐lived radionuclides in the early solar system came from an AGB star because these stars are rarely found in star forming regions, however, we think that further interdisciplinary studies are needed to address the fundamental problem of the birth of our solar system.  相似文献   

12.
Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.  相似文献   

13.
The solar activity can be quantified by solar modulation parameter Φ that affects the heliospheric magnetic field. This activity influences the intensity of the galactic cosmic ray (GCR) particle flux within the solar system, and consequently, the differential primary particle spectra depend on the solar modulation parameter Φ (MeV). The modulation parameter Φ shows spatial and temporal variations (Leya and Masarik 2009). Some of the solar activity variations are cyclic and result in measurable effects as for example the 11‐year solar cycle. Variations in solar activity only induce small effects on the production of long‐lived cosmogenic radionuclides. This is due to the fact that activities measured in meteorites usually correspond to saturation values and represent long‐term average values. Long‐lived radionuclides often require millions of years of irradiation by GCR to reach saturation and therefore activity cycles average out. In contrast, one can expect strongly pronounced variations for saturation values caused by primary flux intensity variations, if short‐lived radionuclides with half‐lives ranging from days to a few years are investigated. Short‐lived cosmogenic nuclides were the subject of many experimental and theoretical investigations (e.g., Evans et al. 1982; Spergel et al. 1986; Neumann et al. 1997; Komura et al. 2002; Laubenstein et al. 2012). The aim of this work is to develop formulae for calculating production rates of radionuclides with short half‐life, taking into account temporal variations in the primary cosmic ray intensity. The developed formulae were applied to the Kosice and Chelyabinsk meteorites. The results for the Ko?ice meteorite were already published (Povinec et al. 2015). Here, we give a full explanation of underlying model.  相似文献   

14.
A theory for the origin of the solar system, which is based on ideas of supersonic turbulent convection and indicates the possibility that the original Laplacian hypothesis may by valid, is presented. We suggest that the first stage of the Sun's formation consisted of the condensation of CNO ices (i.e. H2O, NH3, CH4,...) and later H2, including He as impurity atoms, at interstellar densities to from a cloud of solid grains. These grains then migrate under gravity to their common centre of mass giving up almost two orders of magnitude of angular momentum through resistive interaction with residual gases which are tied, via the ions, to the interstellar magnetic field. Grains rich in CNO rapidly dominate the centre of the cloud at this stage, both giving up almost all of their angular momentum and forming a central chemical inhomogeneity which may account for the present low solar neutrino flux (Prentice, 1976). The rest of the grain cloud, when sufficiently compressed to sweep up the residual gases and go into free fall, is not threatened by rotational disruption until its mean size has shrunk to about the orbit of Neptune. When the central opacity rises sufficiently to halt the free collapse at central density near 10?13 g cm?3, corresponding to a mean cloud radius of 104 R , we find that there is insufficient gravitational energy, for the vaporized cloud to acquire a complete hydrostatic equilibrium, even if a supersonic turbulent stress arising from the motions of convective elements becomes important, as Schatzman (1967) has proposed. Instead we suggest that the inner 3–4% of the cloud mass collapses freely all the way to stellar size to release sufficient energy to stabilize the rest of the infalling cloud. Our model of the early solar nebula thus consists of a small dense quasi-stellar core surrounded by a vast tenuous but opaque turbulent convective envelope. Following an earlier paper (Prentice, 1973) we show how the supersonic turbulent stress \((\rho _t v_t ^2 ) = \beta \rho GM(r)/r\) , where β is called the turbulence parameter, ρ is the gas density andM(r) the mass interior to radiusr causes the envelope to become very centrally condensed (i.e. drastically lowers its moment-of-inertia coefficientf) and leads to a very steep density inversion at its photosurface, as well as causing the interior to rotate like a solid body. As the nebula contracts conserving its angular momentum the ratio θ of centrifugal force to gravitational force at the equator steadily increases. In order to maintain pressure equilibrium at its photosurface, material is extruded outwards from the deep interior of the envelope to form a dense belt of non-turbulent gases at the equator which are free of turbulent viscosity. If the turbulence is sufficiently strong, we find that when θ→1 at equatorial radiusR e=R0, corresponding to the orbit of Neptune, the addition of any further mass to the equator causes the envelope to discontinuously withdraw to a new radiusR e>R0, leaving behind the circular belt of gas at the Kepler orbitR 0. The protosun continues to contract inwards, again rotationally stabilizing itself by extruding fresh material to the equator, and eventually abandoning a second gaseous ring at radiusR 1, and so on. If the collapse occurs homologously the sequence of orbital radiiR n of the system of gaseous Laplacian rings satisfy the geometric progression $$R_n /R_{n + 1} = [1 + m/Mf]^2 = constant, n = 0, 1,2, \ldots ,$$ analogous to the Titius-Bode Law of planetary distances, wherem denotes the mass of the disposed ring andM the remaining mass of the envelope. Choosing a ratio of surface to central temperature for the envelope equal to about 10?3 and adjusting the turbulence parameter β~~0.1 so thatR n/Rn+1 matches the observed mean ratio of 1.73, we typically findf=0.01 and that the rings of gas each have about the same mass, namely 1000M of the solar material. Detailed calculations which take into account non-homologous behaviour resulting from the changing mass fraction of dissociated H2 in the nebula during the collapse do not appreciably disturb this result. This model of the contracting protosun enables us to account for the observed physical structure and mass distribution of the planetary system, as well as the chemistry. In a later Paper II we shall examine in detail the condensation of the planets from the system of gaseous rings.  相似文献   

15.
The contrast of the solar surface granulation detected in the focal plane of the observing system as well as its relations with the aperture of the observing system, the coherent length of atmospheric turbulence and the sensitivity of the detecting system are analyzed. The results of numerical calculation of the granulation contrast as functions of aperture, coherent length of atmospheric turbulence and sensitivity of the detecting system are presented. Results of a related observation are also given.  相似文献   

16.
The assumption that the very low albedo determined for Halley's comet is typical of all short period comets, taken together with the assumption that the average sizes of long and short period comets are approximately equal, leads to an increase in the total mass of comets in the solar system by almost two orders of magnitude. If gravitational ejection from the Uranus - Neptune zone during the later phases of planet formation is indeed responsible for the classical Oort cloud between 104–1015 AU, then the mass of comets in this transplanetary region during cosmogonie times has to exceed the combined masses of Uranus and Neptune by over an order of magnitude. Furthermore, if the recent arguments for as many as 1014 comets in an inner Oort cloud between ~40– 104AU are valid, then the total mass of comets in the solar system approaches 2% of a solar mass.  相似文献   

17.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

18.
In this paper, we idealize the actual solar atmosphere as a multi-isothermal-layer system so as to obtain the energy transmittance of the linear Alfvén wave that propagates through such a system in presence of a uniform oblique magnetic filed. The results indicate that the two-layer model is essentially different to the three-layer one. In the two-layer model, the temperature jump acts as a high pass filter. In the three-layer model, resonant transfer will take place and the transmittance undergoes oscillation as the trigonometric function terms dominate its behavior. For actual solar atmosphere, the result reveals that the lower parts of solar atmosphere are more suitable for those Alfvén waves with period of seconds to transfer their energy.  相似文献   

19.
Abstract— The presence of several short-lived (now extinct) radionuclides in the early solar system demands that they were synthesized and added to preexisting solar system materials shortly (on a time scale on the order of the relevant radionuclide lifetime) before formation of solar system solids. For diverse reasons, it is often suggested that the solar system distributions of these radionuclides were radically heterogeneous, perhaps because of the late addition. Much attention has been given to the astrophysical circumstances that might govern the synthesis and distribution of these short-lived radionuclides, but comparatively little attention has been devoted to the distribution of cosynthesized isotopes. The focus of this paper is a systematic, quantitative evaluation of the collateral consequences in stable and long-lived isotopes that might be expected if short-lived radionuclides, in particular 26Al or 53Mn, were injected at their canonical levels and inhomogeneously distributed in the early solar system. We mix model massive star yields of Meyer et al. (1995) and Woosley and Weaver (1995) into a reservoir of cosmic composition, as tabulated by Anders and Grevesse (1989). To mitigate the effects of systematic deviations that may be present in these mixtures due to uncertainties in model stellar yields, we follow Timmes and Clayton (1996) and also mix into a “renormalized” proxy solar system composition computed from a galactic chemical evolution model based primarily on the stellar yields of Woosley and Weaver (1995). The results are very unfavorable to the likelihood of heterogeneously distributed 26Al derived from supernova ejecta. If a massive star is invoked to account for 26Al, its ejecta must have been rather uniformly distributed, as inferred from the lack of measured collateral anomalies in several elements, notably Ca, Cr, and Ni. Conversely, if 26Al were indeed radically heterogeneously distributed, some other nucleosynthetic source more efficient at producing 26Al is required. In principle, a similar statement applies to 53Mn, but the situation is more complicated. The inferred anomalies at 53Cr will depend not only on how much 53Mn is added by a heterogeneous component, but also more sensitively on the contributions to the associated stable nuclides, 53Cr, 52Cr, and 50Cr. Consideration of predicted collateral anomalies provides no direct support for heterogeneously distributed supernova-derived 53Mn, but the required quantity of supernova contribution, and thus also the collateral anomalies, are much less for 53Mn than for 26Al. With allowance for model calculation uncertainties, it could be argued that anomalies collateral to heterogeneous 53Mn might be small enough to have evaded detection.  相似文献   

20.
The concepts on the spatially-periodic condensation in the solar system have been considered in the light of the general theory of the evolution of the solar system. It has been shown that as protodisks arise and compress, the role of hydromagnetic effects weakens. After the stage of spatially-periodic condensation and accretion, the concentration of gas in protodisks decreases and the role of hydromagnetic effects increases again. Specific features of the formation of planets near the Sun and satellites near the planets can be explained if these peculiarities of the evolution are taken into account. The corresponding role of the above processes has been evaluated numerically.The accretion of gas molecules both by jet streams arising after spatially-periodic condensation and by planet embryos has also been considered. Characteristic times of these processes have been estimated.The results obtained show that the general concept on the solar system evolution (Alfvén and Arrhenius, 1976) is in good agreement with the mechanism of spatially-periodic condensation, which takes place during the formation of primary rings of the solar and satellite systems (Gladyshev, 1977).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号