首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A fully nonlinear Boussinessq-type model with several free coefficients is considered as a departure point. The model is monolayer and low order so as to simplify numerical solvability. The coefficients of the model are here considered functions of the local water depth. In doing so, we allow to improve the dispersive and shoaling properties for narrow banded wave trains in very deep waters. In particular, for monochromatic waves the dispersion and shoaling errors are bounded by ~ 2.8% up to kh = 100, being k the wave number and h the water depth. The proposed model is fully nonlinear in weakly dispersive conditions, so that nonlinear wave decomposition in shallower waters is well reproduced. The model equations are numerically solved using a fourth order scheme and tested against analytical solutions and experimental data.  相似文献   

2.
3.
Using Boussinesq scaling for water waves while imposing no constraints on rotationality, we derive and test model equations for nonlinear water wave transformation over varying depth. These use polynomial basis functions to create velocity profiles which are inserted into the basic equations of motion keeping terms up to the desired Boussinesq scaling order, and solved in a weighted residual sense. The models show rapid convergence to exact solutions for linear dispersion, shoaling, and orbital velocities; however, properties may be substantially improved for a given order of approximation using asymptotic rearrangements. This improvement is accomplished using the large numbers of degrees of freedom inherent in the definitions of the polynomial basis functions either to match additional terms in a Taylor series, or to minimize errors over a range. Explicit coefficients are given at O(μ2) and O(μ4), while more generalized basis functions are given at higher order. Nonlinear performance is somewhat more limited as, for reasons of complexity, we only provide explicitly lower order nonlinear terms. Still, second order harmonics may remain good to kh  10 for O(μ4) equations. Numerical tests for wave transformation over a shoal show good agreement with experiments. Future work will harness the full rotational performance of these systems by incorporating turbulent and viscous stresses into the equations, making them into surf zone models.  相似文献   

4.
This work focuses on linear shoaling performance of low order Boussinesq-type equations. It is shown that the linear shoaling errors can be important in well known equations in the literature. New sets of coefficients are presented for three well known sets of equations. The sets are found so as to minimize a global linear error that includes celerity and shoaling errors. Finally, a new set of enhanced bilayer low order equations is presented, with much improved linear behavior (errors in wave celerity and wave amplitude below 1% up to kh = 20). For completeness, the equations are written in their fully nonlinear version, and the nonlinear coefficients are also given.  相似文献   

5.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

6.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

7.
The paper examines the dependency between total sediment transport, q, and grain size, D (i.e. q  Dp) under dam break generated swash flows. Experiments were performed in a dam break flume over a sloping mobile sand bed with median grain sizes ranging from 0.22 mm to 2.65 mm. The total sediment transport was measured by truncating the flume bed and collecting the sediment transported over the edge. The experiments were designed to exclude pre-generated turbulence and pre-suspended sediment so as to focus solely on the swash flow. The magnitude and nature of the grain size dependency (i.e. p value) were inferred for different flow parameters; the initial dam depth, do, the integrated depth averaged velocity cubed, ∫ u3dt, and against the predicted transport potential, qp, using the Meyer-Peter Muller (MPM) transport model and variations of that model. The data show that negative dependencies (p < 0) are obtained for do and qp, whilst positive dependencies (p > 0) are obtained for ∫ u3dt. This indicates that a given do and qp transport less sediment as grain size increases, whereas transport increases with grain size for a given ∫ u3dt. The p value is found to be narrowly ranged, 0.5  p   0.5. On average, the incorporation of a pressure gradient term via the piezometric head into the MPM formulation reduces qp by 4% (fine sand) to 18% (coarse sand). The measured total transport for fine and coarse sands is best predicted using MPM and MPM + dp*/dx respectively. However, the inferred optimum transport coefficient in the MPM formulation is about 30, much higher than the standard coefficient in a steady flow and this is not due to the presence of the pre-suspended sediment. The optimum transport coefficient indicates some sensitivity to grain size, suggesting that some transport processes remain unaccounted for in the model.  相似文献   

8.
Air–sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA–COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA–COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO2 of 16.4 ± 5.6 cm h?1 when using global mean winds of 6.89 m s?1 from the NCEP/NCAR Reanalysis 1 1954–2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h?1 whilst for less soluble methane the estimate is 18.0 cm h?1.  相似文献   

9.
We describe experiments with multi-directional focused waves interacted with a vertical circular cylinder in a 3D wave basin. The focus of this study is on the run-up of multi-directional focused waves, wave forces, and wave pressures on the cylinder. Part I, the study on wave run-up, has already been presented by Li et al. (2012). In this paper, the analysis of the wave force on the vertical cylinder is presented.In this experiment, a cylinder with 0.25 m in diameter was adopted and different wave parameters, such as focused wave amplitude, peak frequency, frequency bandwidth and directional spreading index, are considered. The model scale kpa (kp is the wave number corresponding to peak frequency, a is the radium of the cylinder) varies from 0.32 to 0.65. The maximum forces of multi-directional focused wave on cylinder were measured and investigated. The results showed that the wave parameters have a significant influence on the wave force, and that the spatial profile of the surface of multi-directional focused wave can also affect its force on the cylinder, which is different from two-dimensional wave. In addition, the ‘secondary loading cycle’ phenomenon was also observed and discussed. In our experiments, the ‘secondary loading cycles’ occur when kA > 0.36 for all cases. While in some referred small scale experiments, the secondary load cycles are observed even for kA = 0.2, when the waves are longer enough. To larger model scale, the pronounced secondary load cycle occurs with larger wave steepness waves.  相似文献   

10.
The formation time of alongshore morphological variability in surf zone sand bars has long been known to differ from one beach to the other and from one post-storm period to another. Here we investigate whether the type of sea state, i.e. distant swell waves or locally generated short period wind sea, affects the formation time of the emerging alongshore topographic variability.A numerical modeling approach is used to examine the emergence of alongshore variability under different shore-normal wave forcing. A research version of Delft3D, operating on the time-scale of wave groups, is applied to a schematised bathymetry with a single bar. The model is then used to investigate several wave scenarios, examining the impact of peak period, frequency spread and directional spread on the formation time of alongshore variability.Results show that an increase in wave period has a large effect, changing the formation time up to O (250%) in case the wave period is changed from a representative value for the Dutch coast (Tp ~ 5–6 s) to an Australian South East coast value (Tp ~ 10–12 s). In contrast, modifications in the directional and frequency spread of the wave field result only in a minor change in the formation time.Examination of hydrodynamics and potential sediment transport shows that the variations in formation time are primarily related to changes in the magnitude of the time-averaged flow conditions. Variations in the magnitude of very low frequency (f < 0.004 Hz) or infragravity (0.004 < f < 0.04 Hz) surf zone flow velocities do not affect the mean sediment transport capacity. Consequently the formation speed of patterns is primarily governed by positive feedback between mean flow and morphology, and low frequency flow fluctuations are of minor importance.These findings indicate that the development of alongshore topographic variability may be faster at swell dominated open coasts, primarily due to the occurrence of longer period swell. Also, at a given site, the arrival of a long wave period swell after a storm can accelerate the emergence of variability.  相似文献   

11.
12.
《Coastal Engineering》2005,52(9):745-770
New experiments were carried out in the Large Oscillating Water Tunnel of WL|Delft Hydraulics (scale 1:1) using asymmetric 2nd-order Stokes waves. The main aim was to gain a better understanding of size-selective sediment transport processes under oscillatory plane-bed/sheet-flow conditions. The new data show that for uniform sand sizes between 0.2 < D < 1.0 mm, measured net transport rates are hardly affected by the grain size and are proportional to the third-order velocity moment. However for finer grains (D = 0.13 mm) net sand transport rates change from the ‘onshore’ direction into the ‘offshore’ direction in the high velocity range. A new measuring technique for sediment concentrations, based on the measurement of electro-resistance (see [McLean, S.R., Ribberink, J.S., Dohmen-Janssen, C.M. and Hassan, W.N.M., 2001. Sediment transport measurements within the sheet flow layer under waves and currents. J. Waterw., Port, Coast., Ocean Eng., ISSN 0733-950X]), was developed further for the improved measurement of sediment dynamics inside the sheet-flow layer. This technique enabled the measurements of particle velocities during the complete wave cycle. It is observed that for long period waves (T = 12.0 s), time-dependent concentrations inside the sheet-flow layer are nearly in phase with the time-dependent flow velocities. As the wave period decreases, the sediment entrainment from the bed as well as the deposition process back to the bed lags behind the wave motion more and more. The new data show that size-gradation has almost no effect on the net total transport rates, provided the grain sizes of the sand mixture are in the range of 0.2 < D < 1.0 mm. However, if very fine grains (D = 0.13 mm) are present in the mixture, net total transport rates of graded sand are generally reduced in comparison with uniform sand with the same D50. The transport rates of individual size fractions of a mixture are strongly influenced by the presence of other fractions in a mixture. Fine particles in sand mixtures are relatively less transported than in that uniform sand case, while the opposite occurs for coarse fractions in a mixture. The relative contribution of the coarse grains to the net total transport is therefore larger than would be expected based on their volume proportion in the original sand mixture. This partial transport behaviour is opposite to what is generally observed in uni-directional (e.g. river) flows. This is caused by vertical sorting of grain sizes in the upper bed layer and in the sheet flow and suspension layers. Kinematic sorting is believed to be responsible for the development of a coarse surface layer on top of a relatively fine sub-layer, providing in this way a relatively large flow exposure for the coarser sizes. Furthermore fine grains are suspended more easily than coarse grains to higher elevations in the flow where they are subject to increasing phase-lag effects (settling lags). The latter also leads to reduced net transport rates of these finer sizes.  相似文献   

13.
14.
Wave–current flow is a phenomenon that is present in many practical engineering situations. Over the past several decades, this type of flow has been increasingly investigated under controlled laboratory conditions. This paper presents a numerical study of wave–current flow in the ocean basin of the LabOceano (COPPE/UFRJ). A homogeneous multiphase model based on the RANS equations and the kɛ turbulence model implemented in ANSYS-CFX code were used. A cross section of the ocean basin was represented. A regular wave with a height of 0.08 m and a period of 1.80 s (i.e., a wave steepness of H/L = 0.016), propagating on favourable currents, was simulated. The behaviour of the free surface elevation over time and the streamlines along the basin for wave and wave–current flows were presented. The numerical results were compared to the non-viscous theory given by the Rayleigh equation applied to the problem of wave–current interaction. Good agreement was found between the wave length estimated by the numerical results and the analytical solutions, with a deviation of less than 2%.  相似文献   

15.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

16.
A practical method to account for the influence of sinkage and trim on the drag of a freely floating (free to sink and trim) common monohull ship at a Froude number F  0.45 is considered. The sinkage and the trim are estimated via two alternative simple methods, considered previously. The drag is also estimated in a simple way, based on the classical Froude decomposition into viscous and wave components. Specifically, well-known semiempirical expressions for the friction drag, the viscous pressure drag and the drag due to hull roughness are used, and the wave drag is evaluated via a practical linear potential flow method. This simple approach can be used for ship models as well as full-scale ships with smooth or rough hull surfaces, and is well suited for early ship design and optimization. The method considered here to determine the sinkage and the trim, and their influence on the drag, yields theoretical predictions of the drag of the Wigley, S60 and DTMB5415 hulls that are much closer to experimental measurements than the corresponding predictions for the hull surfaces of the ships in equilibrium position at rest. These numerical results suggest that sinkage and trim effects, significant at Froude numbers 0.25 < F, on the drag of a typical freely floating monohull ship can be realistically accounted for in a practical manner that only requires simple potential flow computations without iterative computations for a sequence of hull positions.  相似文献   

17.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

18.
Investigation of the bottom slope effects on the nonlinear transformation of irregular waves, which are generated based on JONSWAP spectra, is carried out in a physical wave flume with three slopes (β = 1/15, 1/30, 1/45). The slope effects on the estimation of representative wave height are examined first. To obtain a better estimation of wave height, the slope effect should be considered when slope is larger than 1/30. The nonlinear parameters (bicoherence, skewness and asymmetry) are estimated by using the wavelet-based bispectrum, and the empirical formulae regarding these nonlinear parameters as a function of the local Ursell number are derived based on the present data measured on each slope. The results indicate that the slopes have a negligible effect on the variations of the skewness. The fitted coefficients of the formulae for the other parameters on slope β = 1/15 are clearly different from the results on the slopes β = 1/30 and 1/45, indicating that slope influence on the parameterization cannot be ignored when β > 1/30. Hence, new formulae considering the slope effect are presented. Furthermore, the empirical formulae for the data in surf zone are recommended.  相似文献   

19.
《Coastal Engineering》2006,53(5-6):531-542
The inception of the sheet flow regime as well as the effects of the phase lag when the sheet flow regime is established were investigated for oscillatory flows and combined steady and oscillatory flows. A new criterion for the inception of sheet flow is proposed based on around 300 oscillatory flow cases from experiments. This criterion was introduced in the Camenen and Larson [Camenen, B., Larson, M., 2005. A bedload sediment transport formula for the nearshore. Estuarine, Coastal and Shelf Science 63, 249–260.] bed load formula in order to take into account phase-lag effects in the sheet flow regime. The modification of the Camenen and Larson formula significantly improves the overall agreement with data and yields a correct behavior in relation to some of the main governing parameters, which are the median grain size d50, the orbital wave velocity Uw, and the wave period Tw. The calibration of the new formula was based on more than 200 experimental data values on the net sediment transport rate for a full wave cycle. A conceptual model was also proposed to estimate the ratio between sediment transport rate with and without phase lag, (rpl = qs,net / qs,net,ϕ=0). This simple model provides accurate results and may be used together with any quasi-steady model for bed load transport.  相似文献   

20.
《Ocean Modelling》2007,16(1-2):17-27
In z-coordinates ocean codes, mesoscale fluxes entering the T,S equations are represented by three terms: an eddy-induced velocity, a diapycnal flux Σ and a diffusion (Redi-like) term. Several eddy resolving codes have shown that the diapycnal flux Σ is quite large. However, all ocean codes have been run with zero diapycnal flux, Σ = 0.We model Σ and show that its contribution is of the same order of magnitude as the other two mesoscale terms usually accounted for.We also assess the validity of the two arguments most frequently cited to neglect Σ: (1) in an adiabatic regime, fluxes across isopycnal surfaces must vanish and so must the diapycnal flux Σ (we show that since Σ is not the total buoyancy flux but only part of it, there is no justification in demanding that Σ should satisfy the same conditions as the total flux) and (2) the results of a z-coordinate ocean code without Σ can be re-interpreted as those derived from the TRM (temporal residual mean) in which there is no Σ almost by definition since TRM is quite close to an isopycnal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号