首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   

2.
Integrated studies on the hydrochemistry and water column rates of microbial processes in the eastern sector of the Black Sea along a standard 100-miles transect off Gelendzhik from the coast to the central part of the sea at water depths of 100–2170 m show that a series of warm winters and the absence of intense convective winter mixing resulted in a relatively low content of suspended particulate matter (SPM), particulate organic carbon (POC), and nutrients in the water column in March 2009. The relatively high SPM concentrations and the presence of isotopically light POC at the offshore station are indicative of the supply of terrigenous material from land and low contributions of phytoplanktonic organic matter to the composition of SPM. This may explain the low rates of biogeochemical processes in the water column near the coast. The surface layer at deep-water stations is dominated by isotopically heavy phytoplanktonic organic matter. This suggests that the supply of terrigenous material from land was insufficient in offshore deep-water areas. Therefore, warm winters and insufficient nutrient supply do not prevent photosynthesis in the photic layer of the deep-water zone, which generates organic substrates for heterotrophic aquatic communities. The results of isotopic analysis of POC, measurements of the rates biogeochemical processes, and the hydrochemical characteristics of the water column can be used to determine the nature and seasonal variability of the POC composition.  相似文献   

3.
Metazoan meiofauna (e.g., nematodes, benthic copepods) play important roles in deep-sea sediment communities, but information as basic as standing stocks is not known for much of the world ocean. We therefore sampled six stations: one near the 2700-m isobath and one near the 3700-m isobath off northern, central, and southern California. We counted benthic copepods, both Desmoscolecidae and nondesmoscolecid nematodes, kinorhynchs, nauplii, and ostracods from multiple-corer samples. Nematodes from our 2700-m and 3700-m stations, and ostracods and nauplii from our 3700-m stations, were unusually abundant compared to those from other stations from comparable depths in the Pacific.Off California, the abundances of benthic copepods, kinorhynchs, and nondesmoscolecids at the 2700-m stations were significantly greater than those at the 3700-m stations. Abundance of benthic copepods was correlated with the percentage of medium sand in the sediment, so sediment texture could be important to them. That of kinorhynchs was correlated with the concentration of chloroplastic-pigment equivalents and percentage nitrogen, so consumable material from the euphotic zone could be important to them. In contrast to the usual pattern of decreasing abundance with depth, Desmoscolecidae abundance in the central region was greater at the 3700-m than at the 2700-m station.The three regions differed significantly in both kinorhynch and ostracod abundances, independently of depth. In the food-poor deep sea, animals are expected to be more abundant where food is plentiful. Unexpectedly, ostracod abundance was negatively correlated with all food variables. A possible explanation is that the natural enemies of ostracods are abundant where food is abundant.Multivariate faunal similarity at 2700 m differed significantly from that at 3700 m, independently of regions. Benthic copepods were most responsible for the difference. Regions also differed in multivariate faunal similarity independently of depth. In general, faunal similarity is expected to decrease as separation distance increases, but unexpectedly, the northern- and southern-region faunas were more similar to each other than to the central-region fauna. Kinorhynchs were most responsible for this pattern.  相似文献   

4.
Migration to deep water during diapause may contribute to the retention of several dominant oceanic calanoid copepod populations in eastern boundary current systems, where the mean flow of poleward undercurrents is in opposition to mean equatorward surface flow. The vertical distributions of Calanus pacificus late copepodid stages were measured at a 1200-m deep, open-ocean station in the Southern California Bight on 13 dates between April 2000 and March 2001 using a MOCNESS (multiple opening and closing net and environmental sensing system). Copepod vertical distribution was compared to the vertical position of the California Undercurrent. Diapausing C. pacificus were primarily found between 300 and 400 m at the beginning of the diapause season, in June and July, and between 250 and 350 at the end of the diapause season, in November and January. Depth distributions were broader from August to October, ranging from about 350 m to the maximum depth sampled, 1100 m, and the median depth of diapausing C. pacificus was deeper, up to 800-900 m, during this period. Maximal depths of diapausing C. pacificus, 1100-1000 m, were greater than have previously been reported. The mean depth of the California Undercurrent was 250 m, and its approximate depth range was 110-430 m. Diapausing C. pacificus CV were abundant in the California Undercurrent at the beginning and end of the diapause season, in June to July and late-November to January, suggesting that poleward transport of diapausing copepods in the California Undercurrent contributes to C. pacificus population retention in the California Current System.  相似文献   

5.
The concentration of 15 amino acids in hydrolyzed particulate matter from different regions and depths of the Pacific Ocean has been measured by gas—liquid chromatography. The relative composition was similar for all samples in the euphotic zone, where the particulate amino acid (PAA) concentration ranged from 370 to 2260 nmoles/1 in coastal waters and from 90 to 260 nmoles/1 in the open ocean. Total PAA concentration dropped rapidly with depth, levelling off at 10–40 nmoles/1 below 200 m. Glycine, serine, glutamic acid and aspartic acid were the most abundant PAA in deep equatorial water and in deep off-shore California water. The nitrogen content of PAA could often account for 100% of the total particulate organic nitrogen present, while PAA carbon contributed up to 50% of the total particulate organic carbon in euphotic waters and down to 20% in deep waters. The protein equivalent to the total PAA content of particulate matter in near-surface waters amounted to 11–32 μg/1 at oceanic stations and up to 270 μg/1 at coastal stations.  相似文献   

6.
Rates for nitrification, phytoplankton uptake of ammonium, and regeneration of ammonium were measured in the Delaware River as functions of irradiance and nutrient concentrations, using 15N labeling methods. Phytoplankton uptake increased and nitrification rates declined with increased light intensity. The irradiance level required for maximum uptake by phytoplankton was similar to that for maximal inhibition of nitrification (about 300μEm−2 s−1). Daily, water-column averaged rates, calculated by integration of the observed rate-intensity relationships, indicate that light plays a key role in regulating the balance between oxidation of NH4+ by bacteria and assimilation by phytoplankton in the Delaware. The results show that uptake of ammonium by phytoplankton in the dark may exceed uptake in the light in optically thick systems.  相似文献   

7.
Abstract. Vertical profiles of temperature, nutrients (silicate, phosphate, and nitrate), chlorophyll a and phytoplankton abundance are given for six stations located in the Gulf of California, June 1982, above 1 % of light intensity. The vertical distribution of phytoplankton was related to the water column structure: stratified stations had a defined nutricline and subsurface chlorophyll and phytoplankton abundance maxima were present, which were found to be related to the depth of the principal thermocline; vertical distribution of taxa was not uniform and low affinity values (< 0.5) were calculated among depths at these stations. Despite the irregular vertical distribution of chlorophyll and cell number, there was a great affinity in the species composition throughout the euphotic zone at well-mixed or weakly stratified stations. Nanoplankton organisms, mainly coc-colithophorids, were the most important numerical contributors at the chlorophyll maxima, except when this was superficial, in which case diatoms were the most numerous group. Some patterns of the vertical distribution of the main phytoplankton groups ( e.g. , diatoms, dinoflagellates, and microflagellates) are shown. The spectrum of diversity in the water column was useful only for mixed-waters. The relationship between stability, nutrients, and phytoplankton - regarding their vertical distribution - and the importance of physical and biological processes on phytoplankton ecology are discussed.  相似文献   

8.
应用~(14)C示踪的方法,对山东沿海的13个海区浮游植物的同化系数进行了比较全面的测定和计算。指出不同海区和不同季节同化系数存在着明显的变化。提出不同海区季和年平均值的变化范围,以及垂直变化规律的特点。  相似文献   

9.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

10.
Ammonium concentrations were found to be elevated near Southern California sewage outfalls; concentrations exceeding 3 μg-atom litre−1 were measured 5 km from the discharge area. In stratified water, high values were found below 15 m, but in well-mixed water, high levels were detected at the surface. Subsurface high concentrations were associated with turbid layers, coliform bacteria and reduced oxygen levels. The distribution of ammonium correlated well with measured subsurface currents. The maximum concentration at the Whites Point outfall was 155 μg-atom litre−1 at 27 m, about 2 km from the diffuser. Measurements of ammonium in sewage, compared with that in seawater at Whites Point, suggested that sewage was diluted up to 400-fold. Ammonium may be a useful tracer of the discharge of sewage in seawater.  相似文献   

11.
During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm−2 h−1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the early burial stages.  相似文献   

12.
The redox speciation of dissolved iron in seawater was evaluated at 121 locations in the Pacific Ocean at depths of 15-1000 m, using the method of luminol chemiluminescence. The results indicate that reduced iron, Fe(II), is ubiquitous in surface seawater with a relatively consistent pattern of occurrence. Surface maxima were present in most profiles, with median concentrations of 25-30 pM representing 12-14% of the total dissolved iron. Concentrations decreased monotonically with depth to<12 pM within the upper euphotic zone. This pattern was observed during both day and nighttime sampling events, which suggests that non-photochemical production mechanisms can produce photochemical-like signatures. Further, if theoretical rates of Fe(II) oxidation are applicable to the open ocean, then the employed sampling methods precluded assessment of photochemically-produced Fe(II), regardless of ambient light conditions. For this and other reasons, the concentrations reported here for the upper water column likely represent lower limits of labile iron concentration, and suggest that dissolved iron may be more available for uptake than previously believed. Deeper in the water column, Fe(II) was also frequently detected, though it constituted a small fraction of the total dissolved iron. Possible source mechanisms at these depths include thermal (dark) reduction of Fe(III) organic complexes or remineralization of sinking biogenic particles containing Fe(II). In the northern Philippine Sea between the Japanese coast and the Izu-Bonin volcanic arc system, Fe(II) concentrations were found to be atypically high, possibly because of high atmospheric dust deposition near the surface and transport of sediment-derived iron at depth.  相似文献   

13.
In most oceanic environments, dissolved nickel (Ni) concentrations are drawn down in surface waters with increasing concentrations at depth, implying a role for biology in the geochemical distribution of Ni. Studies with phytoplankton isolates from the surface ocean have established the biochemical roles of Ni in the assimilation of urea and oxidative defense. To determine if these requirements are relevant in natural marine planktonic assemblages, bottle-based fertilization experiments were used to test the effects of low-level additions of Ni, urea, or both Ni and urea to surface waters at several locations offshore of Peru and California, as well as in the Gulf of California. Urea and Ni+urea additions consistently promoted phytoplankton growth relative to control and +Ni treatments, except in a coastal upwelling site and Peruvian water. No effect was observed in the upwelling site, but in Peruvian waters urea additions resulted in increased phytoplankton pigments and phosphate drawdown only when Ni was added concurrently, suggesting a biochemically dependent Ni–urea colimitation. In the Gulf of California, Ni additions without urea resulted in increased abundances of cyanobacteria, picoeukaryotes, and the corresponding pigments. As urea additions showed the overall phytoplankton community was also urea-limited, it appears that the cyanobacteria and potentially the picoeukaryotes were colimited by Ni and urea in a biochemically independent fashion. In parallel, radiotracer-based uptake experiments were used to study the kinetics and spatial variation of biological Ni assimilation. In these experiments, the added radiotracer rarely equilibrated with the natural Ni present, precluding estimates a determination of in situ Ni uptake rates and suggesting that much of the natural Ni was not bioavailable. The lack of equilibration likely did not preclude the measurement of community Ni uptake kinetics, nor the comparison of measured rates between locations. The highest VmaxKρ?1 values, which reflect a competitive advantage in Ni acquisition at low concentrations, were observed in stratified nitrogen-deplete communities, potentially linking Ni and nitrogen biogeochemistry in a manner consistent with the biochemical utilization of Ni. Overall, uptake rates were higher in the euphotic rather than non-euphotic zone communities, directly reconciling the nutrient-like depth profile of Ni. The Ni uptake rates observed at the nitrate-replete Fe-deplete Peru stations were an order of magnitude lower than the other sites. This result agrees with calculations suggesting that saturation of the cell surface with Ni and iron (Fe) transporters may limit uptake rates in low Fe waters.  相似文献   

14.
Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion (nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs include many opportunistic taxa (e.g. Vibrionaceae), and because these bacteria may be more susceptible to viral attack due to enhanced resource uptake abilities and potentially rapid localized growth, it is possible that this negative effect was due to enhanced viral lysis. Consequently, virus infection may have positive effects upon bacterioplankton diversity in the oligotrophic ocean, by regulating the abundance of dominant competitors, and allowing rarer taxa to coexist; however, some rarer taxa (such as diazotrophs) may be more susceptible to viral attack due to opportunistic lifestyles.  相似文献   

15.
Living (Rose Bengal stained) benthic foraminifera were investigated at 18 deep-sea stations sampled in the Whittard Canyon area (NE Atlantic). The stations were positioned along 4 bathymetric transects ranging from 300 to 3000 m depth: two along the main canyon axes (Western and Eastern branches) and two along adjacent open slopes (Western and Eastern slopes). The aim of this study was to assess changes of foraminiferal standing stock, composition and microhabitat in relation to the physico-chemical conditions prevailing at and below the sediment-water interface in various canyon and open-slope environments. Minimal oxygen penetration depths and maximal diffusive oxygen uptakes were recorded at upper canyon stations, suggesting a high mineralisation rate. This is confirmed by the high phytopigment concentrations measured in the sediment of the upper canyon axes. Foraminiferal abundance was positively correlated with diffusive oxygen uptake and phytopigment concentration in the sediment. This suggests a control of organic matter fluxes on the foraminiferal communities. Foraminiferal abundance was generally higher along the canyon axis compared to open-slope sites at comparable water depths. The species composition varied with water depth along all four transects, but was also different between canyon branches and adjacent slopes. The silty/sandy intercalations at many of the deeper canyon stations may have been rapidly deposited by fairly recent gravity flows. At station 51WB (3002 m), the faunal characteristics (strong dominance, shallow infaunal microhabitats) suggest that the foraminiferal community is in an early state of ecosystem colonisation after these recent sedimentation events, which would have supplied the important amounts of phytopigments.  相似文献   

16.
Coccolithophores are one of the major, living phytoplankton groups and play important roles in geochemical cycles and climate. They are a particularly dominant group in oligotrophic waters, yet a lot more needs to be learned about their horizontal and vertical distributions. Coccolithophores were collected at different photic depths from 15 stations across the Caribbean Sea during cruise 35/1 of the RV Meteor from April to May 1996. A total of 67 species was identified, with an average of 19 species per station. Coccolithophores were encountered at nearly all stations but abundances were fairly low (102-103 cells 1-1). Coccolithophore assemblages in the four oceanographical provinces identified (Granada Basin waters, Atlantic surface waters, northern Caribbean waters, and Pedro Bank waters) differed in their species composition and abundances. Abundance peaks occurred near the surface and in the deeper photic zone (140-150 m) just below the deep chlorophyll-a maximum at the top of the nitrate nutricline.  相似文献   

17.
Macrofauna Communities in the Eastern Mediterranean Deep Sea   总被引:1,自引:0,他引:1  
Abstract. During two expeditions with RV ‘Meteor’ in summer 1993 and winter 1997/98 the structural and functional diversity of the benthic system of the highly oligotrophic eastern Mediterranean deep sea was investigated. The macrofauna communities were dominated by polychaetes even at the deepest stations. The fauna at shallow stations was dominated by surface deposit feeders, whereas subsurface deposit feeders and predators generally increased with depth. A high percentage of suspension‐feeding Porifera was found in the Levantine Basin. Mean abundance and number of taxa of both expeditions were significantly correlated to depth and distance to the nearest coast as well as to the total organic carbon (TOC) content in sediments. Numbers of taxa and abundance decreased generally with depth, although lowest numbers were not found at the deepest stations but in the extremely oligotrophic Levantine and Ierapetra Basin. Biomass measured during the second cruise was extremely low in the Ierapetra Basin and comparable to other extreme oligotrophic seas. The significant correlations found for TOC contents and macrofauna with distance to coast during both expeditions apparently reflect the role of hydrographically governed transport of organic matter produced in coastal regions into greater and extreme depths of the Mediterranean Sea. Seasonal differences in macrofauna communities due to seasonal differences in food supply were not found. However, recent large‐scale hydrographic changes (Eastern Mediterranean Transient, EMT) might change the oligotrophy and, thus, the structure of the benthic communities in the Eastern Mediterranean deep sea.  相似文献   

18.
The Abra alba community is widely spread in the coastal zone of the English Channel and the Southern Bight of the North Sea. The community is located on shallow, fine muddy sands. Its spatial distribution can be broken up into a number of isolated patches (Atlantic French, British and German coast) and one large continuous distribution area (northern France up to the Netherlands). The aim of this study is to investigate the geographical patterns within the macrobenthic A. alba community at different scales: the community's full distribution range (i.e. large scale) and a selected area with a continuous distribution of the A. alba community (i.e. small scale) in relation to structuring environmental variables. Therefore, an analysis of newly collected samples along the Belgian coastal zone was combined with available information on the A. alba community throughout its distribution range. Although the community structure shows a high similarity across the full distribution range of the A. alba community, large- as well as small-scale changes in community composition were observed: the Belgian Continental Shelf (BCS) should be considered as a major transition from the rich southern to the relatively poorer northern distribution area of the A. alba community. At a large scale (i.e. full distribution range), the differences in community structure are expected to result from (1) the specific hydrodynamic conditions in the English Channel (Atlantic ocean waters) and the Southern Bight of the North Sea, with a consequent differential connectivity between the different areas and (2) the climatological and related faunal shift from temperate (English Channel) to boreal conditions (German Bight). At a small scale (i.e. within the continuous distribution area), structural and functional community aspects may result from geographic differences in (1) detrital food availability, related to riverine input and pelagic productivity, along and across the coastline and (2) the amount of suspended matter, impoverishing the A. alba community when excessively available.  相似文献   

19.
Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Seasonal and spatial distribution of ammonia-oxidizing archaea(AOA) and betaproteobacteria(β-AOB) in surface sediments from the East China Sea(ECS) were investigated using ammonia monooxygenase α subunit(amo A) gene. In order to characterize the community of AOA and β-AOB, real-time quantitative polymerase chain reaction(q PCR) was carried out in this study, along with environmental parameters. The abundance of β-AOB amo A gene(2.17×106–4.54×107 copy numbers per gram wet weight sediment) was always greater than that of AOA amo A gene(2.18×105–9.89×106 copy numbers per gram wet weight sediment) in all sampling stations. The q PCR results were correlated with environmental parameters. AOA amo A gene copy numbers in April were positively related to temperature and nitrite concentration(p0.05). β-AOB amo A gene copy numbers in August correlated negatively with salinity(p0.01), and correlated positively with ammonium concentration(p0.05). With the increase of salinity, the amo A gene copy ratio of AOB to AOA had a tendency to decrease, which suggested β-AOB dominated in the area of high level ammonium and AOA preferred high salinity area.  相似文献   

20.
Petroleum-derived hydrocarbons have been identified in sediments by analysis of the n-alkanes, aromatic hydrocarbons and branched and cyclic components (humps). The detection of low levels of petroleum input to sediments can be ambiguous due to the presence of syngenetic biolipids. Triterpenoids, especially the (17αH, 21βH)-hopanes, have been proposed as sensitive molecular markers of petroleum pollution.Recent sediments from the Southern California Bight to subbottom depths of about 30 cm (pre-anthropogenic) contain lipids of syngenetic origin with major humps of branched and cyclic material and triterpenoids consisting mainly of the (17αH, 21βH)-hopanes ranging from C27 to C35. Extended hopanes (> C31) are found as 1:1 mixtures of the 22R and 22S diastereomers. The 17α(H),18α(H), 21β(H)-28,30-bisnorhopane is the dominant triterpane for most of these sediments and appears to be a potential molecular marker characteristic of the Southern California petroleums. Extended tricyclic diterpanes ranging from C19 to C27 are also present and their structures make them further possible indicators of petroleum. Southern California Bight sediments therefore appear to contain petroleum products from both seepage and anthropogenic activity.Recent sediments from other areas (e.g. Guaymas Basin, Gulf of California; Cook Inlet, Alaska; Eastern Bering Sea; Walvis Bay, Southwest Africa; and Mangrove Lake, Bermuda) contain predominantly (17βH, 21βH)-hopanes and hopenes, indicating recent synthesis and no petroleum pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号