首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a first-order secular general planetary theory, using the Jacobi-Radau set of origins, referring to common fixed plane and in terms of Poincaré canonical variables. We neglect powers higher than the fourth with respect to the eccentricities and sines of inclinations.  相似文献   

2.
For the general and restricted elliptic spatial three-body problems under the high oblateness of the central body and at both second-order orbital and secondary resonances, an analytical solution is obtained by the use of the Weierstrass functions and with an accuracy of the fourth-degree terms in the eccentricities and in the inclinations. The behavior of solutions is studied on the phase plane.  相似文献   

3.
Anonlinear analytical theory of secular perturbations in the problem of the motion of a systemof small bodies around a major attractive center has been developed. Themutual perturbations of the satellites and the influence of the oblateness of the central body are taken into account in the model. In contrast to the classical Laplace-Lagrange theory based on linear equations for Lagrange elements, the third-degree terms in orbital eccentricities and inclinations are taken into account in the equations. The corresponding improvement of the solution turns out to be essential in studying the evolution of orbits over long time intervals. A program inC has been written to calculate the corrections to the fundamental frequencies of the solution and the third-degree secular perturbations in orbital eccentricities and inclinations. The proposed method has been applied to investigate the motion of the major Uranian satellites. Over time intervals longer than 100 years, allowance for the nonlinear terms in the equations is shown to give corrections to the coordinates of Miranda on the order of the orbital eccentricity, which is several thousand kilometers in linear measure. For other satellites, the effect of allowance for the nonlinear terms turns out to be smaller. Obviously, when a general analytical theory of motion for the major Uranian satellites is constructed, the nonlinear terms in the equations for the secular perturbations should be taken into account.  相似文献   

4.
In order to generate an analytical theory of the motion of the Moon by considering planetary perturbations, a procedure of general planetary theory (GPT) is used. In this case, the Moon is considered as an addition planet to the eight principal planets. Therefore, according to the GPT procedure, the theory of the Moon’s orbital motion can be presented in the form of series with respect to the evolution of eccentric and oblique variables with quasi-periodic coefficients, which are the functions of mean longitudes for principal planets and the Moon. The relationship between evolution variables and the time is determined by a trigonometric solution for the independent secular system that describes the secular motion of a perigee and the Moon node by considering secular planetary inequalities. Principal planetary coordinates required for generating the theory of the motion of the Moon includes only Keplerian terms, the intermediate orbit, and the linear theory with respect to eccentricities and inclinations in the first order relative to the masses. All analytical calculations are performed by means of the specialized echeloned Poisson Series Processor EPSP.  相似文献   

5.
We present a second order secular Jupiter-Saturn planetary theory through Poincaré canonical variables, von Zeipel's method and Jacobi-Radau referential. We neglect in our expansions terms of power higher than the fourth with respect to eccentricities and sines of inclinations. We assume that the disturbing function is composed of secular and critical terms only. We shall deriveF 2si and writeF 2s in terms of Poincaré canonical variables in Part II of this problem.  相似文献   

6.
We propose a special representation for the secular part of the perturbing function describing the mutual attraction of satellites. In contrast to the known representations, it has a single analytical form for any ratio between the semimajor axes of the perturbed and perturbing satellites. The resulting expression is a partial sum of a power series with respect to the small eccentricities and planet-equatorial inclinations of the satellites’ orbits. This sum includes terms up to and including the fourth degree with respect to these small parameters. The proposed expansion is compared with one of the known expansions for the secular part of the perturbing function.  相似文献   

7.
A new theory for the calculation of proper elements, taking into account terms of degree four in the eccentricities and inclinations, and also terms of order two in the mass of Jupiter, has been derived and programmed in a self contained code. It has many advantages with respect to the previous ones. Being fully analytical, it defines an explicit algorithm applicable to any chosen set of orbits. Unlike first order theories, it takes into account the effect of shallow resonances upon the secular frequencies; this effect is quite substantial, e.g. for Themis. Short periodic effects are corrected for by a rigorous procedure. Unlike linear theories, it accounts for the effects of higher degree terms and can thus be applied to asteroids with low to moderate eccentricity and inclination; secular resonances resulting from the combination of up to four secular frequencies can be accounted for. The new theory is self checking : the proper elements being computed with an iterative algorithm, the behaviour of the iteration can be used to define a quality code. The amount of computation required for a single set of osculating elements, although not negligible, is such that the method can be systematically applied on long lists of osculating orbital elements, taken either from catalogues of observed objects or from the output of orbit computations. As a result, this theory has been used to derive proper elements for 4100 numbered asteroids, and to test the accuracy by means of numerical integrations. These results are discussed both from a quantitative point of view, to derive an a posteriori accuracy of the proper elements sets, and from a qualitative one, by comparison with the higher degree secular resonance theory.  相似文献   

8.
In this part we expand the indirect part of the planetary perturbing function by Smart's method, via Taylor's theorem. We neglect, in our expansion, terms of degree higher than the fourth with regard to the eccentricities and tangents of the inclinations.  相似文献   

9.
An analytical expression of the force function of a slightly elliptical Gaussian ring is proposed. The obtained power expansion of ellipse eccentricity contains the terms up to the third power inclusive. The coefficients of this expansion depend on the coordinates of the sampling point and semi-major axis of the ellipse. In the advanced application to the system of the major moons of Uranus for the investigation into secular mutual perturbations, the generalization of the force function is performed for the case of a nearly coplanar system of rings. The force function obtained in this work is more accurate than the earlier known ones and includes the terms up to the third power inclusive with respect to the eccentricities and equatorial inclinations of the moons’ orbits.  相似文献   

10.
For the general and restricted elliptic planetary spatial three-bodyproblems under the oblateness of the central body and at both third-orderorbital and secondary resonances, the analytical solutions are obtained bythe use of the Weierstrass functions with an accuracy of the fourth-degreeterms in the eccentricities and inclinations. The behaviour of solutions isstudied on the phase plane.  相似文献   

11.
《Icarus》1986,68(1):55-76
The accuracy and reliability of the proper orbital elements used to define asteroid families are investigated by simulating numerically the dynamical evolution of families assumed to arise from the “explosion” of a parent object. The orbits of the simulated family asteroids have then been integrated in the frame of the elliptic restricted three-body problem Sun-Jupiter-asteroid, for times of the order of the circulation periods of perihelia and nodes. By filtering out short-periodic perturbations, we have monitored the behavior of the proper eccentricities and inclinations, computed according to the linear secular perturbation theory. Significant long-period variations have been found especially for families having nonnegligible eccentricities and/or inclinations (like the Eos family), and strong disturbances due to the proximity of mean motion commensurabilities with Jupiter have been evidenced (for instance, in the case of the Themis family). These phenomena can cause a significant “noise” on the proper eccentricities and inclinations, probably affecting in some cases the derived family memberships. They can also give rise to a spurious anisotropy in the fragment ejection velocity fields computed from the dispersion in proper elements observed in each family, and this could explain the puzzling anisotropies of this kind actually found in real families by D. Brouwer (1951, Astron. J. 56, 9–32) and by V. Zappalà, P. Farinella, Z. Knežević, and P. Paolicchi (1984), Icarus 59, 261–285).  相似文献   

12.
We expand the principal part of the planetary disturbing function, by Smart's method, using Taylor's theorem. In our expansion we neglect terms of degree higher than the fourth in the eccentricities and tangents of the inclinations.Now at the JPL Pasadena, California.  相似文献   

13.
We eliminate by the method of von Zeipel the short-period terms in a first order-with respect to planetary masses—general planetary Uranus-Neptune theory. We exclude in the expansion terms of eccentricities and sines of inclinations higher than the third power.Our variables are the Poincaré canonical variables. We use the Jacobi-Radau set of origins, and we refer the planes of the osculating ellipses to a common fixed plane, the longitudes to a common origin. The short-periodic terms arising from the indirect and principal parts of the disturbing functions, are eliminated separately. The Fourier series of the principal part of the disturbing function, is reduced to the sum of only the first three terms.  相似文献   

14.
A solution of the Uranus-Neptune planetary canonical equations of motion through the Von Zeipel technique is presented. A unique determinging function which depends upon mixed canonical variables, reduces the 12 critical terms of the Hamiltonian to the set of its secular terms. The Poincaré canonical variables are used. We refer to a common fixed plane, and apply the Jacobi-Radau set of origins. In our expansion we neglected terms of power higher than the fourth with respect to the eccentricities and sines of the inclinations.  相似文献   

15.
Among the major features of the asteroids as a group is the fact that they are small and numerous rather than being a single planet, and that they have unusually high eccentricities and inclinations. Regarding the first, this paper presents two lines of argument concerning the concept that the asteroids formed with a mass-distribution similar to what we observe today. Considerations of planet accretion are used to clarify the role of Jupiter in preventing coalescence of asteroids into a single planet. Regarding the eccentricities and inclinations, it is proposed that they were excited by secular resonances associated with the presence of Jupiter within a dissipating solar nebula.  相似文献   

16.
The Hamiltonian representing the average over the mean-motion angles (i.e. the secular part) of the three-body planetary problem is considered. An efficient algorithm constructing invariant tori for the trajectories in phase space is provided. To give a possible practical application, we consider a toy-model including the main terms of the secular part of a hypothetic Sun-Jupiter-Saturn system having eccentricities and inclinations equal to 1/20 of the true ones. The scheme of a KAM proof of the stability of the model is sketched. The proof is “computer assisted”.  相似文献   

17.
A near equality between the nodal rates of suitably defined Trojan orbits and Jupiter represents an important type of a secular resonance. This case is realized by the model Sun-Jupiter-Saturn-Trojan, referred to the invariable plane. A second theoretical example is based on the elliptic three-body problem Sun-Jupiter-Trojan, where the vanishing nodal rate of a special Trojan orbit and the vanishing rate of Jupiter's longitude of perihelion define a secular resonance.We investigate the perturbations in the asteroidal inclinations and the nodes and consider the possibility of a libration.  相似文献   

18.
Some peculiarities in the motion of retrograde satellites of Jupiter have been investigated. The intermediate orbits were obtained by approximated solution of differential equations before transformation by the Zeipel's method. These orbits are non-keplerian ellipses. For their construction the secular motion of nodes, perijoves, and essential periodic perturbations were taken into account.The eccentricities and inclinations of all the retrograte satellites change in a large range. The motion may happen in a region, which is located very near to the limit cases of our theory. For some satellites the sign of the constant, which characterizes the type of orbit, librating or circular, may change. In some cases the value of this constant may be close to zero. Then the motion of the longitude of perijove will reduce the speed and in some moment the circular orbit may change its direction.  相似文献   

19.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

20.
This paper derives the contributionF 2 * by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. An earlier solution suggested by Hill is based on Leverrier's equations for the variation of elements of Jupiter and Saturn and on the semi-empirical adjustment of the coefficients in the secular disturbing function. Nowadays there are several modern methods of eliminating periodic terms from the Hamiltonian and deriving a purely secular disturbing function. Von Zeipel's method is especially suitable. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations.The Krylov-Bogolubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing functionF 2 * derived in this paper can be included in existing theories of the secular effects of principal planets. A better approach would be to preserve the homogeneity of the theory and rederive all the secular perturbations of principal planets using Andoyer's symbolism, including the part produced by the great inequality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号